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Notation

In this dissertation, we use the following notation:

_, C"

Ii_. ×.., cn×m

N',W

S ", E

In, ®

A T, A*, A -1

tr A, re(A)
He G

Sh G

real numbers, complex numbers

n × 1 real column vectors, n × 1 complex column vectors

n x m real matrices, n x m complex matrices

n × n nonnegative definite matrices, n x n positive definite matrices

n × n symmetric matrices, expectation

n × n identity, Kronecker product

transpose of A, complex conjugate transpose of A, inverse of A

trace of A, range space of A

Hermitian part of arbitrary complex matrix G

HeG z_ I(G+G*)=3
Skew-Hermitian part of arbitrary complex matrix G

Sha ½(a- a*)

For convenience, we define the following terms:

z_ BR_IBT ' _ ___cT_r2_Ic '

We also define the dimensions of the various signals below:

x(t) E I_n is the plant state vector

xc(t) E _n¢ is the controller state vector

u(t) E IR'n is the control input signal

w(t) E R d is a unit-intensity, zero-mean, Gaussian white noise signal

d(t) E l__ is the uncertainty input signal

y(t) E E l is the measurement output signal

z(t) E I_P is the performance output signal

e(t) E ]Rr is the uncertainty output signal

Furthermore, we define the order of the closed-loop system to be fi zx= n + nc, where
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77is the order of the plant and nc is the order of the compensator. We also define the

following closed-loop matrices:

•c(t) /i == ' BcC

Finally, we define

Ac + BcDC¢ ' = BcF1

F c<],ta[ E, E2c ].

,b_[ D' ]B_D2 '

/_A_T_= JR1 0 1= o c[R_cc '

where R, __AETE, ' R2 _ ETE2, and R,2 _= ETE2 = 0, and

= 0 B_,_B T '

where l] _ D,D T, 1"2 _= D2D T, and l'q2 _ D_D T = O.
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Summary

The ability to develop an integrated control system design methodology for ro-

bust high performance controllers satisfying multiple design criteria and real world

hardware constraints constitutes a challenging task. The increasingly stringent per-

formance specifications required for controlling such systems necessitates a trade-off

between controller complexity and robustness. The principle challenge of the minimal

complexity robust control design is to arrive at a tractable control design formulation

in spite of the extreme complexity of such systems. Hence, design of minimal com-

plexity robust controllers for systems in the face of modeling errors has been a major

preoccupation of system and control theorists and practitioners for the past several

decades.

Although the theory for designing linear output feedback controllers is quite ma-

ture, the actual solution of the design equations can be a daunting task. This becomes

even more difficult if an optimal reduced-order controller is sought. In this disser-

tation, we develop a general fixed-structure control design framework that addresses

the following paradigm: Reduce control law complexity subject to the achievement

of a specified accuracy in the face of a specified level of uncertainty.

The control law complexity is reduced by developing a decentralized static out-

put feedback formulation for fixed:structure controller synthesis. The decentralized

static output feedback formulation captures a large class of controller architectures

within a common framework and allows a common numerical algorithm to be used

xix



for computational purposes.

We first discussthis decentralizedstatic output feedbackframework and demon-

strate its applicability on the space-basedACTEX control testbed. Sincethe strict

architectureconstraintsof the ACTEX flight experimentprecludestandard LQG and

7-/o¢techniques,we show that the decentralizedstatic output feedbackformulation

for fixed-structure controller synthesiscan directly account for the controller archi-

tecture constraintsand improveclosed-loopperformanceby designingfixed-structure

7/2-optimal controllers.

The next problemweconsideris fixed-structurestable 7-/2-optimal controller syn-

thesis using a multiobjective optimization technique. The problem is presented in the

decentralized static output feedback framework developed for fixed-structure dynamic

controller synthesis. A quasi-Newton/continuation algorithm is used to compute so-

lutions to the necessary conditions. To demonstrate the approach, two numerical

examples are considered. The first example is a second-order spring-mass-damper

system and the second example is a fourth-order two-mass system, both of which are

considered in the stable stabilization literature. The results are then compared with

other methods of stable compensator synthesis.

Next we use a similar approach to consider fixed-structure ?-/2-optimal relative

degree two controller synthesis. By considering dynamic controllers structured to

appear as the augmentation of two strictly proper dynamic controllers in series, the

relative degree condition is guaranteed. Three examples are presented to demonstrate

the effectiveness of this design technique.

We then explore the applicability of the implicit small gain guaranteed cost bound

for controller synthesis. For flexibility in controller synthesis, we adopt the approach

of fixed-structure controller design which allows consideration of arbitrary controller

structures, including order, internal structure, and decentralization. Two numerical

XX



examples that have been addressed by means of alternative guaranteed cost bounds

are presented to demonstrate the fixed-structure/implicit small gain approach to ro-

bust controller synthesis.

One of the fundamental problems in feedback control design is the ability of the

control system to maintain stability and performance in the face of system uncer-

tainties. To this end, elegant multivariable robust control design frameworks such as

7-/o_ control, L1 control, and a-synthesis have been developed to address the robust

stability and performance control problem. An implicit assumption inherent in these

design frameworks is that the controller will be implemented exactly. In a recent

paper by Keel and Bhattacharyya, it was shown that even though such frameworks

are robust with respect to system uncertainty, they are extremely sensitive, or frag-

ile, with respect to errors in the controller coefficients. Here we extend the robust

fixed-structure controller synthesis approach to develop controllers which are robust

to system uncertainties and non-fragile, or resilient, to controller gain variations.

Next, we develop linear, fixed-order pressure rise feedback dynamic compensators

for axial flow compressors. Unlike the nonlinear static controllers proposed in the

literature possessing gain at all frequencies, the proposed dynamic compensators ex-

plicitly account for compressor performance versus sensor accuracy, compressor per-

formance versus processor throughput, and compressor performance versus distur-

bance rejection. Furthermore, the proposed controller is predicated on only pressure

rise measurements, providing a considerable simplification in the sensing architecture

over the bifurcation-based and backstepping controllers proposed in the literature.

Finally, we use a unifying absolute stability result for mixed uncertainty to obtain

fixed-structure controllers and fixed-order stability multipliers which provide robust

stability and performance. The robust controller synthesis technique proposed here

permits the treatment of fully populated real uncertain blocks which may, in addition,

xxi



possessinternal structure. The ability to addressreal uncertainblocksisbasedon the

useof an appropriate classof multipliers whosestructure is compatible with the real

block uncertainty. Hence,tailoring the multipliers to the structure of the uncertainty

not only leadsto the ability to addressmoregeneraluncertainty characterizationsbut

can also lead to lessconservativecontrollers than obtained from standard mixed-p

synthesis.
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CHAPTER 1

Introduction

1olo Robust Fixed-Structure Control Design:

Motivation and Overview

The growing complexity of dynamic systems results in unavoidable discrepan-

cies between real physical systems and the mathematical models used to describe

them. These uncertainties, in turn, result in severe degradation of control system

performance. Thus, one of the main objectives of feedback control system theory

is to design controllers that are robust with respect to system uncertainties as well

as guarantee specific performance objectives. The problem of robust control design

constitutes a significant challenge in mathematical system theory which, at the same

time, addresses a fundamental issue in the practical implementation of feedback con-

trol systems, namely, modeling uncertainty. Modeling uncertainty must be character-

ized and quantified so that it can be accounted for within the control design process.

For example, the dynamics of large flexible space structures are highly nonlinear (due

to geometric and material nonlinearities) but are commonly approximated by lin-

ear models. Furthermore, since flexible structures are inherently infinite dimensional

systems, any finite dimensional approximation model will exhibit significant error,

particularly as the modal frequency increases.



Theseuncertaintiesarisingdueto inexact modelingare referredto asplant uncer-

tainties and are broadly classified into parametric and nonparametric uncertainties.

Parametric uncertainty here describes errors that can be translated into uncertainty in

the physical elements of some time-invariant state-space representation of the design

model (i.e., perturbations or uncertainties in specific parameters of the physical sys-

tem). On the other hand, nonparametric uncertainty is best viewed in the frequency

domain and describes errors that have bounded gain but arbitrary phase (e.g., uncer-

tainties due to unmodeled system dynamics or system linearization). The distinction

of parametric versus nonparametric uncertainty in the plant model is of paramount

importance in robust control design. For example, in the problem of vibration control

of flexible space structures, if the stiffness matrix uncertainty is modeled as nonpara-

metric uncertainty, then perturbations to the damping matrix will inadvertently be

allowed. Consequently, stability and performance predictions for a given compensator

will be extremely conservative, which limits achievable performance.

Hence, robust control theory mainly deals with two issues; namely, the qualitative

issue of robust stability and the quantitative issue of robust performance. Robust

stability addresses the stability of a given system in the face of uncertainties while

robust performance addresses performance degradation due to system uncertainties

over the region of robust stability. Often worst case performance of the system in the

face of all possible uncertainties is addressed as a measure of robust performance.

Modern multivariable feedback control theory and application has been one of the

most rapidly growing areas in the scientific and engineering communities for the past

several decades. Some of the most fundamental advances in this field can be traced

back to World War II. During the post-World War II era, the emergent superpowers

turned their research focus to aerospace technology in order to compete in the race to

space. One of the central achievements of this research effort was the development of



V

state-space based methods introduced in the West by R. E. Kalman in the 1960's [71,

72] which led to the Kalman filter [68, 73]. Another pivotal achievement of the early

1960's was the development of the Linear Quadratic Regulator (LQR) [4, 67, 80,101]

which, when combined with the Kalman filter, led to the formulation of the Linear

Quadratic Gaussian (LQG) controller design methodology [4, 6, 67, 80,107]. These

revolutionary breakthroughs in optimal navigation and control led to the successful

launch of the Apollo mission which resulted in the first manned moon landing on July

20, 1969.

One of the most attractive features of the LQG controller design methodology

is the characterization of the optimal compensator gains via a system of two de-

coupled Riccati equations. A number of commercially available computational tools

offer efficient solutions to standard Riccati equations. Unfortunately, however, the

dimension of an LQG controller is always equal to the dimension of the design plant.

Since on-board processors have limited throughput and uncertainty is always present

in the system, this necessitates robust minimal complexity controllers which further

renders LQG controllers impractical for many applications. This has motivated the

study of optimal fixed-order controllers. Balanced truncation techniques [124] were

used to reduce the order of the plant or the designed full-order controller, however

these reduced-order controllers could not even guarantee closed-loop stability, let

alone performance. Another approach, developed to directly synthesize fixed-order

controllers, is the fixed-structure control framework developed in [62, 63]. In this

approach, the compensator structure is fixed a priori and the optimization is per-

formed over the compensator parameters. The application of fixed-structure control

theory to the fixed-order controller design problem yields a characterization of the

optimal fixed-order controllers via a set of coupled Riccati and Lyapunov equations,

each containing a projection matrix which motivated the name "optimal projection

3



equations" in [62,63].

At the sametime asthe developmentof the LQG controller, the work on absolute

stability theory which forms the basisof modernrobust control theory wasbeingpio-

neeredby the RomanianmathematicianV. M. Popov[102]. Absolute stability theory

addressesthe stability of feedbacksystemswhoseforward path contains a dynamic

linear time-invariant system and whosefeedbackpath contains a memoryless(pos-

sibly time-varying) nonlinearity (uncertainty). Thesestability criteria are generally

stated in terms of the linear systemand apply to every elementof a specifiedclass

of nonlinearities. Researchefforts in this direction were vigorously pursued in the

former SovietUnion by V. A. Yakubovich [116-120]and Y. Z. Tsypkin [109]. In the

United States, progressalong the samedirection was made by R. E. Kalman [69],

E. I. Jury [65,66], R. W. Brockett [19,20], Z. L. Willems [20], and K. S. Naren-

dra [91-94]. The significant progressmade towards resolving the absolutestability

problem is nowwell documentedin researchmonographs,suchasAizermanand Gant-

macher[1], Lefschetz[82], and Popov [103]. A moremodern treatment of the subject

is given by Safonov[104]while excellentbook treatments are presentedin Narendra

and Taylor [94]and Vidyasagar [111].

Sinceall real-worldsystemsexhibit nonlinearbehaviorand possessnumerousun-

certainties (due to such phenomenaas exogenousdisturbances,noise, mathemati-

cal modeling errors, unmodelednonlinear dynamics,unmodeledhigh frequencydy-

namics,and unmodeledactuator and sensordynamics), a viable controller synthesis

methodology must be able to account for system nonlinearities and uncertainties.

The problem of accurately controlling systemperformancevariables whosedynam-

ics contain significant nonlinearitiesand uncertaintiesposesa challengingproblem in

control systemdesign. The critical issuesof system uncertainty can be traced back

to H. S. Black's 1927patent where large loop gains were proposed for addressing

4
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the problem of uncertainty [17, 28]. In classical single-input, single-output control

design techniques based on the Nyquist criterion and Bode gain and phase plots, the

question of robustness to system uncertainty was addressed by requiring that the

overall closed-loop system possess prespecified relative stability margins, i.e., gain

and phase margins. The issue of parametric plant uncertainty, however, was largely

neglected. Even though, as demonstrated by Kalman [70], optimal linear quadratic

state-feedback regulators possess guaranteed robustness properties, i.e., cx) dB up-

ward and 6 dB downward gain margins and +60 ° phase margin, these robustness

properties are misleading since the guaranteed gain and phase margins are valid only

for uncertainty at the system input. Furthermore, it was shown in [55] that the ro-

bustness properties of LQR designs could diminish with increasing parametric system

uncertainty. Finally, these robustness guarantees are nonexistent in observer-based

LQG controllers [4, 29].

In the late 1970's and early 1980's, a renewed research interest emerged in ad-

dressing plant uncertainty which led to an accelerated progress in the field of robust

control (see [28] for a representative collection of papers on this topic). A main mo-

tivation for this growing research effort appears to be the ever increasing complexity

of the modern systems within the engineering field (such as large flexible structures,

advanced tactical fighter aircraft, and variable-cycle gas turbine engines, to name a

few), as well as complex economic and biological systems. Thus the predominant con-

siderations in control law design for modern engineering systems have become control

law complexity and control law robustness, respectively. Indeed, with increasing sys-

tem complexity comes increasing (and usually overriding concern with) system cost,

reliability, and maintainability, whereas with increasing accuracy requirements come

increasingly complex control systems. Since, generally speaking, the more complex

the control system, the more it costs, the less reliable it is, and the harder it is



to maintain, it follows that high accuracyrequirementsconflict with control system

complexity requirementsin highly complexsystems.In fact, they arealso in conflict

with eachother through the specificationof control law robustness.In an attempt to

capture robustnessguaranteeswithin observerbaseddesigns,Doyleand Stein [32,33]

proposeda two-stageanalysis/synthesisrecoveryframeworkthat led to the LQG/LTR

methodology[108]yielding dynamic compensatorswith recoveredLQR-type margins.

However,the LQG/LTR methodologyis limited to the recoveryof LQR marginsand

employshigh-gain feedback.In addition, this designframework is not applicable to

plants with non-minimum phasezerosand involvesinversionof the plant which leads

to controllerswhich are extremely sensitiveto parametric uncertainty.

One approachto controller synthesisin the presenceof unstructured uncertainty

is the well known 74o_methodology. Severalauthors haveshown that the 7/_ prob-

lem can be solvedvia a pair of modified Riccati equations [11,31,45,99]. However,

as is also well known, this methodologyis highly conservativefor parametric uncer-

tainty. Using a Lyapunov bounding framework, the authors in [12,13,88] addressed

the problem of robust analysisand synthesisin the faceof parametric uncertainty.

Severalbounding functions wereconsideredin [12],while [10]extendedthe quadratic

bounding technique of [100] to robust fixed-ordercontroller synthesis. Alternative

approachesto robust stability and performancein the presenceof parametric uncer-

tainty arediscussedin [28,77,100]. However,a major drawbackof the conventional

Lyapunov bounding techniques[48] is their inability to restrict time-variation of the

parametric perturbations. In a recent seriesof papers [46,48-50,52], a refined Lya-

punov function techniquewasdevelopedto overcomesomeof the current limitations

of Lyapunov function theory for the problem of robust stability and performancein

the presenceof constant real parameteruncertainty. The authors in [46,48-50,52]ex-

tend the rich theory of absolutestability to developparameter-dependentLyapunov

g



z
v

functions that guarantee robust stability and performance in the presence of constant

real parametric uncertainty. Finally, using frequency domain stability criteria, the

authors in [57, 61] demonstrate that the seemingly remote modern robust stability

and performance tools based on the structured singular value [30,123] can be directly

connected to absolute stability theory via selection of stability multipliers for various

classes of nonlinearities. Hence, [46, 48-50, 52, 57] provide an alternative approach to

mixed-# synthesis [122], while avoiding the standard D, N-K iteration and curve

fitting procedure.

Prior experience with the state-space techniques and the LQG controllers prompt-

ed many researchers to seek state-space-based robust controller synthesis methods

that essentially try to mimic the solution features of the LQG controller, i.e., controller

gains based on solutions to modified Riccati equations. Recent advances along these

lines are given in [10, 11, 13, 31,45, 46, 52, 57, 76, 88, 99,100]. Furthermore, the optimal

projection equation approach of Hyland and Bernstein [62,63] has been extended to

the problem of robust controller synthesis in the presence of unstructured system

uncertainty [11, 45, 88], arbitrary time-varying parameter uncertainty [10, 12, 13, 88],

and constant real parameter uncertainty [46,48-50,52,57] via the quadratic Lyapunov

bounding framework developed in [44].

1.2. Brief Outline Of the Report

In this research, we will build on the results of [14, 95] in several directions. In

Chapter 2, we formulate the decentralized static output feedback problem for fixed-

structure controller synthesis. This formulation captures a large class of controller

architectures within a common framework and allows a common numerical algorithm

to be used for computational purposes. This framework will provide the basis for

7



muchof the subsequentcontroller synthesis,suchas the stable 7/2-optimal controller

synthesisdiscussedin Chapter 3. In this chapter, a multiobjective optimization tech-

nique is used to optimize the 7t2 cost of the closed-loopsystem while maintaining

controller stability. The decentralizedstatic output feedbackframework is also ex-

ploited in Chapter 4 when we consider 7/2-optimal relative degree two controller

synthesis.

Next, in Chapter 5, weconsiderthe applicability of the implicit small gain guaran-

teedcostbound for controller synthesis.In Chapter 6, the decentralizedstatic output

feedbackframework is usedto developcontrollerswith the ability to maintain control

system stability and performance in the face of system uncertainties, which could

eveninclude variations in the controller gains. Then, in Chapter 7, weuse the fixed-

architecture control methodologyto developlinear, fixed-orderpressurerise feedback

dynamic compensatorsfor axial flow compressors.Unlike the nonlinear static con-

trollers proposed in the literature possessinggain at all frequencies,the proposed

dynamic compensatorsexplicitly account for compressorperformanceand is pred-

icated on only pressure rise measurements, providing a considerable simplification

in the sensing architecture over the bifurcation-based and backstepping controllers

proposed in the literature.

Finally, in Chapter 8, we use a unifying absolute stability result for mixed uncer-

tainty to obtain fixed-structure controllers and fixed-order stability multipliers which

provide robust stability and performance. The robust controller synthesis technique

proposed here permits the treatment of fully populated real uncertain blocks which

may, in addition, possess internal structure. The ability to address real uncertain

blocks is based on the use of an appropriate class of multipliers whose structure is

compatible with the real block uncertainty. Hence, tailoring the multipliers to the

structure of the uncertainty not only leads to the ability to address more general



uncertainty characterizationsbut can also lead to lessconservativecontrollers than

obtained from the standard mixed-# sythesistechniques.

Finally, in Chapter 9, conclusionsand recommendationsfor future researchare

discussed.

V
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CHAPTER 2

Fixed-Structure Control

Framework

2.1. Introduction

This chapter reviews the decentralized static output feedback problem formula-

tion for fixed-structure controller synthesis. As shown in [14, 95], the decentralized

static output feedback format captures a large class of controller architectures within

a common framework and allows a common numerical algorithm to be used for com-

putational purposes.

Consider the (m + q + 1)-vector-input, (m + q + 1)-vector-output decentralized

system shown in Figure 2.1, where w is the exogenous disturbance input, z is the per-

formance variable, the signals Yi and ui, i = 1,..., m, are measurement and control

signals, respectively, and ei and di, i -- I,..., q, are used to account for model un-

certainty. The decentralized static output feedback multi vector-input, multi vector-

output system shown in Figure 2.1 is characterized by the dynamics

m q

x(t) = .A_c(t)+E B_,uj(t)+E Bd_dk(t)+Bww(t), t e [0, cx_), (2.1)
j=l k=l

rn q

y,(t) = C_,Sc(t)+ED_,,uj(t)+ED_a,kdk(t)+V_w,w(t), i= 1,2,...,m, (2.2)

j=l k=l

11
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Figure 2.1: Decentralized Static Output Feedback Framework

m q

ei(t) = Ce,5:(t)+E:Deu,_Uj(t)+EDed,kdk(t)+:Dew, w(t), i= 1,2,...,q, (2.3)

j=l k=l

m q

z(t) = C_k(t)+ E T)zujuj(t)+ E 9zdkdk(t)+D_w(t). (2.4)
j=l k=l

In the above formulation, model uncertainty is represented by the decentralized

static output feedback map

di(t) = Aiei(t), i = 1,...,q, (2.5)

where the uncertain matrices Ai are not necessarily distinct. To represent decentral-

ized static output feedback control with possibly repeated gains, we consider

ui(t) = Eiyi(t), i= 1,...,m, (2.6)

where the matrices K:_ are not necessarily distinct. Reordering the variables in (2.5)

12



and (2.6) if necessaryand defining

_,(t)= . , f_(t)= : ,
lure(t) [y£(tlJ

d(t) = • , e(t)= • ,
dqit)J Leq(t)J

Cy _ :

LC_mJ

c7C_ _ "

LC; 

v_[v_, ... v_d,],

(2.5) and (2.6) can be rewritten

• • •

• • • 79_,,.,],

• "" _)ydlq ]

''' : I '

• .. ?)_d_.j

_edlq

_)edqq

_eWl

: 1

(2.7)

where A and/C have the form

(2.8)

(2.9)

(2.1o)

(2.11)

d(t) = A_(t), (2.12)

fi(t) = /Q)(t), (2.13)

A _ block-diag[I,, ® ml,,• .,I_v ® my],

K: =_ block-diag [I,_ ®/Q,..., I_ ® K:g],

(2.14)

(2.15)

where v is the number of distinct uncertainties Ai 6 C p_×/'_ or Rp_x¢',, ¢i is the number

of repetitions of uncertainty Ai, g is the number of distinct gains K:i 6 R _ ×_ and

¢i is the number of repetitions of gain K:i. Note that K_I,..., K:g are not necessarily
v g

square matrices, and E ¢i = q and E ¢i = m. Furthermore, define the matrices
i=1 i=1

13
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QLii and Qa_j to be

QL_j

rl ¢1 xri

0r2¢2 x r,

0r,_l¢,_l xr,

0ri(j-1)×r,

IT,
0r_(¢_-j) xr_

0r_+t¢_+l xri

0rv¢_ x r,

where i = 1,...,v, and j = 1,...,¢i.

QR_j

c1¢1 xci

0c2¢2xc,

Oci_,¢i_l xc_

I_,
0c_(¢,-j) x_

Oci+ldPi+l ×Ci

(2.16)

With the definitions in (2.7)-(2.11), the transfer function G(s) from [_2T, a7r, wT] w

to [_T, _W, zT]T of the decentralized system has the realization

A B_ ' B_' Bw "

G(s) ,'_ __ D__.__L___ (2.17)

l c, I ', ',
which represents the linear, time-invariant dynamic system

x(t) = A}c(t)+ B_(t) + Bad(t) + B_w(t), t e [0,_),

_l(t) = C_,_c(t)+ :Dyjz(t)+ vyad(t) + Vy_w(t),

_(t) = Cjc(t) + :D_z(t) + :D,dd(t)+ 79_w(t),

z(t) = Cjc(t) + 79_(t) + :D_dd(t)+ 79_w(t),

(2.18)

(2.19)

(2.2O)

(2.21)

which is equivalent to (2.1)-(2.4). Furthermore, by rewriting the decentralized control

signals (2.6) in the Compact form given by (2.13), the closed-loop system realization

from [d_r, wT] w to [_T, zT]T is given by

_(_) ~ _o.D_ , (2.22)

14



¢¢_.j

where

_ A -kBu_L_:Icy,

Co _ Ce -I-Deu)_L_:Icy,

_ Cz + T)zuICL_clCy,

Bo a= Ba + Bu_Lic1:Dyd,

Do a=:Deal+ :Deu_L_:':Dyd,

JEI a__Vzd + DzuKL;:'D,_,

[9 A=B,_ + BJCL_:'Dyw,

[91 A= :D_w+ :D_L_:':Dyw,

-I

and where L_: _ I- T)_=K;. Note that we assume det(L_) # 0 for all K; given by

(2.15) to ensure the well-posedness of the feedback interconnection.

2.2. Performance Constraints

The decentralized static output feedback framework can be used to help synthesize

controllers that are optimal with respect to user-chosen performance criteria. A

performance criterion consists of a cost function and one or more constraints. The

cost function represents some characteristic of the controlled system which a desirable

controller will minimize, while the constraints represent properties that an acceptable

controller must have. An example of a cost function is an induced norm of the closed-

loop transfer function, while examples of constraints include asymptotic stability of

the nominal closed-loop system or robust stability with respect to uncertainties of a

certain size and/or structure.

As an example, consider the 7-/2-optimal centralized strictly proper dynamic con-

trol (Linear Quadratic Gaussian) problem. Here we will consider the nth-order stabi-

lizable and detectable plant with noisy measurements, uncertainty signals, and per-

formance variables given by

2(t) = Ax(t) + Bu(t) + Bod(t) + DlW(t),

y(t) = Cx(t) + Du(t) + Fld(t) + D2w(t),

e(t) = Cox(t) + F2u(t),

t • [o, (2.23)

(2.24)

(2.25)

15



z(t) = Elx(t) + E2u(t). (2.26)

To recast this system into the decentralized static output feedback format, we first

define the decentralized control signals to be

ul(t) = A¢yl(t), u2(t) = B¢y2(t), u3(t) = C¢y3(t). (2.27)

Note that we can also write the control signals (2.27) in the compact form given by

(2.13), where, for the centralized strictly proper dynamic control problem, K_ takes

the form

Further note that QL,j

QL11

Ac 0

K_ =A 0 Bc

0 0

and QR,_ are given by

0

0

c_

no

no X nc

m×nc

, QL21

ne Xnc

Omxnc

, QL31 _-

?lc X t1_

71 c X ?/g

Im

(2.28)

QR,, m [In e 0nex / 0neXnc ] , QR2, _-- [01xne II 0lxne ] , QR3, ---- [0no 0ncxl Ine ] "

With these definitions, the closed-loop system is given by

3

_(t) = A_(t) + __, ta_,ui(t)+ taww(t), t • [o,_1,
i=1

3

yi(t) = Cy,_(t) + EVu_ouj(t) + V_w,w(t), i= 1,2,3,

j=l

3

z(t) = c._(t) + F_.v,.,u,(t),
i=1

where

[m0] u[0] [O]0 0 ' I ' I ' 0 ' 0 '

Cu,=[O I], C_,=[C 0], Cu_=[O I],

Du.l, =0, Du.l_=0, Dy.13=0, Du.2_=0, Du.22=0, Du.23=D,

16



Dyu31 = 0, Dzm32 = 0, "Dzmaa = 0, _)ywl = 0, T)z/w 2 = D2,

Cz=[E, o], vz.,=o, vzu,=o, Vzu,=E2

The LQG problem can now be defined as

_)yw3 -- O,

rain II_O)ll_
/CE_s

where K:_ is the set of all ]C of the form (2.28) such that A is stable.

If K: E ]Cs, then

]](_z_(S)[122 = tr (_/_,

(2.29)

(2.30)

where (_ is the unique, nonnegative definite solution to the Lyapunov equation

0 = A(_ -4- (_T "4- Y. (2.31)

Necessary conditions for optimality involve a Lagrangian function that accounts for

the constraint (2.31). The Lagrangian for the 7-/2-optimal control problem is given by

f_ (D, (_, Ac , Bc , Cc ) = tr O.[=t+ t r [_ [ ft (_ + O.fi.w +V], (2.32)

where/5 e I_ is a Lagrange multiplier, and the partial derivatives of T_(P,Q,Ac,B¢,Cc)

are given by

oP

oz. _ _Tp + PA + k,
OQ

Off,, T ~ ~ T T ~ ~ T D,,,EQC_ ] -T T- Lr_ QR,i,cOlCi - 2QTuT" [B:PQC, + B, PDVy w + W -- T

(2.33)

(2.34)

i=1,2,3, j=l, (2.35)

T -T T
where 7- = I + :D_uL_: K: .

Finally, although the LQG problem does not account for model uncertainty, for

completeness we note that, for centralized strictly proper dynamic control problems

17



wherethe modeluncertainty for the nominalsystemmatrices (A, B, C ,D) is modeled

as

AA = BoAC0, AB = BoAF2, AC = F1ACo, AD = FIAF2,

the matrices Bd, Ce, 7)e_,, and 7:)e_ have the form

[0]L J0 ' ' 0
t

2.3. Quasi-Newton Gradient Optimization

Once the problem has been posed in terms of the gradients of an associated La-

grangian, a general-purpose BFGS quasi-Newton algorithm is used to solve the non-

linear optimization problem. The line-search portions of the algorithm were modified

to include a constraint-checking subroutine which decreases the length of the search

direction vector until it lies entirely within the allowable set of parameters that yield

a stable closed-loop system. This modification ensures that the cost function remains

defined at every point in the line-search process. Numerical experience indicates that

this subroutine is usually invoked only during the first few iterations of a synthesis

problem. For details of the algorithm, see [35].

One requirement of gradient-based optimization algorithms is an initial stabilizing

design. Here, this was usually accomplished by using either the LQG controller for

full-order designs or a balanced truncation of the LQG controller to obtain a reduced-

order design.

18



2.4. Structural Dynamics Modeling of the ACTEX

Flight Experiment

To demonstrate the applicability of the decentralized static output feedback for-

mat for controller design, we present the ACTEX flight experiment. This testbed

provides a unique opportunity for users to implement and test controllers on a space-

based platform. However, the hardware environment has several features that must

be accounted for when specifying control algorithms. First, the feedback control al-

gorithms that can be implemented on ACTEX are fixed gain, and thus adaptive con-

trollers cannot be used. Furthermore, these fixed-gain controllers are analog, which

avoids sampling effects. Finally, the implementable analog controllers have a prespec-

ified structure in which only the filter gains and natural frequencies can be modified.

Since this constraint does not permit implementation of dynamic compensators of

arbitrary structure, standard LQG and 7"/o_ methods cannot be applied.

We thus show that the decentralized static output feedback formulation of fixed-

structure controller synthesis can directly account for the control-structure constraints

of the ACTEX flight experiment. Specifically, we show that the ACTEX controller

structure can be written as a decentralized static output feedback problem. Having

done this, we then proceed to apply our techniques to obtain _2-optimal feedback

controllers for suppressing broadband disturbances.

The ACTEX flight experiment consists of a plate connected to a satellite by three

struts, as shown in Figure 2.2. Each strut is equipped with its own control piezo-

actuator as well as a colocated and nearly colocated sensor. A disturbance can be

introduced to the experimental package through each of the three control actuators,

or through a disturbance actuator on the plate. In addition, each of the three control

actuators has an independent decentralized analog controller.

19



Figure 2.2: ACTEX flight experiment

Severalexperimentshave been run on the ACTEX package,with telemetry re-

turned for identification purposes.Measurementsweretaken from onboardaccelerom-

eters, sensorinputs, and actuator outputs, sampledat 4 kHz. Using this data, iden-

tification wasperformedon the plant from the strut 1 actuator to the strut 1 nearly-

colocatedsensor.For frequenciesbelow 200 Hz, thesedynamicscan be represented

by (2.23)-(2.24) where

-1.56 77.98 0 0
-77.98 -1.56 0 0

0 0 -0.25 24.99
0 0 -24.99 -0.25

A ,B=

-1.10

-0.21

-0.11

0.03

, D1 =

-1.10 0 ]

-0.21 0

-0.11 0

0.03 0

C= [-0.15 0.70 1.83 6.88 ], D=I, D2= [ 0 0.1 ].

Finally, we define ttie performance signals (2_26) based on the output measurements

so that the Ci0sed-loop system reduces: the vibrations seen by the sensors, specifically,

we have

.,__[ E0]0 0 0 , E2=(_ 1 "

2O



2.5. Fixed-Structure Synthesis for the ACTEX

Flight Experiment

Since continuous-time controllers are implemented on ACTEX, hardware con-

straints place a limit on the form that the controllers may take. Each of the three

struts on ACTEX has a decentralized controller, available in three fourth-order con-

figurations and a sixth-order configuration, as shown below

kaw 7 k4w_ (2.36)
Gc,(s) = s2 + 0.3wxs + w7 + s 2 + 0.3w2s + w_'

k3Ld2 1218 (2.37)

k3w_ /27 (2.38)

k3w_ /22 /21S (2.39)
ac4(_)= _ + 0.3/23_+/21 s2+ 0.3/2_s+/23 _ + 0.3/21s+ _7'

where/21,/22,/23, k3, and k4 are subject to the constraints

0 </2x,w2, w3 <_ 1024,

-16_<ka_< 16,

-8<k4 <8.

(2.40)

Now, we consider the controller associated with strut 1, and express the controller

in the decentralized static output feedback framework. Controller configuration 1,

given by (2.36), can be expressed in dynamic compensator form as

AC

0 1 0 0 ]

-/27 -0.3wl 0 0 J B_ =
0 0 0 1 '

0 0 -/2_ -0.3w2

k_/27o k./2_o]CC

o]1

0 '

1

Controller configurations 2 through 4, given by (2.37)-(2.39), can be expressed simi-

larly and are given in the Appendix.
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Havingspecifiedthe form of the controller, weconsiderthe 7-/2synthesisproblem.

The 7-12norm of the closed-looptransfer function (_(s) is given by (2.30). In order

to design7-/2-optimalcontrollers for the ACTEX experiment, we pose the following

optimization problem: Determine/(7 that minimizes

g(tg) = trQR, (2.41)

where Q ¢ N"a satisfies (2.31). The necessary conditions for optimality can be derived

by forming the Lagrangian (2.32). The partial derivatives with respect to (_ and

/5 in (2.32) are given by (2.33) and (2.34). To obtain the partial derivative of the

Lagrangian with respect to the free parameters in the controller gains, we first specify

the controller configuration. As an example, we consider controller configuration 1,

given by (2.36). The settings for each of the other controller configurations are given

in the Appendix.

For controller configuration 1, the block-diagonal matrix/(7 has the form (2.28).

Note that this controller has four free optimization parameters; namely, Wl, w2, ka,

and k4. Thus, we construct the matrix

021

0
K=

0

0

and note that

0 0 0

w2 0 0

0 ka 0 '

0 0 k4

lC = Ko + L1KR1 + L2KKR2 + LaKKMaKRa,
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where

L 1

R1

K0

"0000"

1000

0000

0100

0000

0000

0000

0000

0000

0 0 00

-0.3 0 00

0 0 00

0 -0.300

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

T

,R2:

"01000000 O"

000000000

000100000

000000000

000000000

000010000

000000000

000010000

000000000

, L2 :

1000"

0000

0100

0000

0000

0000

0000

0000

0000

0 0 0 0"

-1 0 0 0

0 0 0 0

0 -1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

T

,R3=

, L3 =

"0000"

0000

0000

0000

0000

0010

0000

0001

0000

T

-0000"

0000

0000

0000

0000

0000

0000

0000

1100

M3= 0 0
' 0 0 '

00

Now with K: in terms of K, we can take the derivative of the Lagrangian with respect

to K. Define the following notation

q_T r-Ty'T ,_ A T ~ - TL-T7- = I + ,.._,,-lc ". , : "rB,, PQdy pc. ,

b IX T- ~ T -T T ~ ~ T -TTB,, PD:D,wLjc , __, zx: = r_D,,,EQd_ Ljc .

The derivative of the Lagrangian with respect to K is given by

1 /}t'- -=- diag{LT_R w + LT,_p_K + KLT_p_ + LT_RTKMTK + KLT2.RTKM w
2 OK

+MTKKLT.AR w + LTZ)R w + LTZ)RYiK + KLTbI_ + LTDRTKMTK
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÷KLTL)RTKM w + MTKKLTDRT + LTER w + LTjEP_K + KLTjEI_

w_ T W MTKKLT_RT}.+LTERTKMTK + KL 3 ER 3 KM3 +

2.6. Simulation Results

As mentioned in Section 2.3, one requirement of gradient-based optimization al-

gorithms is an initial stabilizing design. Initial designs showed that for large values of

wi, i = 1, 2, 3, the cost function depended very weakly upon these values. Therefore,

w_, i = 1, 2, 3, were initially chosen to be 48, 72, and 96, respectively. Furthermore,

since the open-loop system was stable, an initial stabilizing design could be obtained

by setting k3 = k4 = 0. With these values set, the BFGS quasi-Newton algorithm

was applied to find the _/2-optimal solution for a given fixed-structure controller

configuration.

The ACTEX experiment is a lightly damped flexible structure, as can be seen by

the impulse response shown in Figure 2.3, where x(0) = [ 0 0 0 1 ]T. For each of

the four different controller configurations, three different controllers were designed

by setting the control weighting matrix R2 to 1, 0.01, and 0.0001. The 7-/2 cost of

these controllers can be seen in Table 2.1. It is seen that the 7-/2 performance is best

for the first controller configuration. In fact, the fourth controller configuration ran

into parameter limits (2.40), as explained in Section 2.3. Therefore, the optimization

routine terminated due to a boundary constraint rather than a small gradient condi-

tion. It can also be seen from Table 2.1 that the _2 cost of the closed-loop system

decreases with increasing controller authority.

The optimal controller parameters for the first controller configuration are given

in Table 2.2. We can see from the output signals of the impulse response in Figure 2.4

that with R2 -- 1 the controller does not attenuate the vibrations significantly. How-
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Figure 2.3: Open-loop impulse response

10

Config. 3 Config. 4

R2 = 1 0.6774 0.6782

R2 = 0.01 0.5601 0.5613

R2 = 0.0001

Config. 1 Config. 2

0.5825 0.6774

0.2444 0.5601

0.1910 0.5495 0.5495 0.5507

Table 2.1:7i2 costs for various controller configurations and weightings

wl w2 ka k4

R2 = 1 26.6460 80.0602 0.1352 0.0074

R2 = 0.01 36.4434

R2 = 0.0001 37.3664

99.1179 0.3195 0.4025

123.8404 0.2081 0.6314

Table 2.2: Optimal controller parameters for controller configuration 1
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ever,asthe controller authority is increased,the attenuation becomesgreater, asseen

in Figure 2.5 and Figure 2.6, though this doesincreasethe control effort expended,

as shownin Figures 2.7-2.9, which could lead to actuator saturation. Finally, Fig-

ure 2.10 showsthe Bode plots of the open-loopand closed-loopsystems. It is seen

that the size of the first peak in the closed-loopresponseis decreasedas the con-

troller authority is increased.Another important featureof the closed-loopfrequency

responseis the high-frequencyroll-off. Sincethe ACTEX systemmodelhasa relative

degreeof zero, designinga controller without high-frequencyroll-off would result in

a closed-loopsystem which possessesgain at all frequencies,thus unmodeledhigh-

frequencydynamicscould destabilizethe closed-loopsystem,whereasthesedynamics

would beattenuated with a strictly proper dynamic controller.

2
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Figure 2.4: Closed-loop impulse response, R2 -- 1
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Figure 2.5: Closed-loop impulse response, R2 = 0.01
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Figure 2.6: Closed-lo0p impulse response, R_ = 0.0001
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Figure 2.9: Closed-loop control effort, R2 = 0.0001
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2.7. Conclusion

In this chapter we introduced the decentralized static output feedback format.

Specifically, we showed how dynamic output feedback control problems can be trans-

formed into a decentralized static output feedback form. By using this format, a

numerical optimization scheme can be used to optimize the controller gains with re-

spect to a given cost function and constraint equation. Furthermore, we demonstrated

the effectiveness of this framework on the ACTEX flight experiment.
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CHAPTER 3

Stable 7-/2-Optimal Controller

Synthesis

3.1. Introduction

It is well known that even though LQG synthesis will stabilize the nominal closed-

loop system, it can produce controllers with unstable dynamics, especially at high

authority levels. Of course, for certain plants, specifically those that do not satisfy

the parity interlacing property [121], only unstable controllers are stabilizing. How-

ever, even for stable plants, LQG synthesis often produces unstable controllers, thus

requiring Nyquist encirclements of the critical point. These encirclements and the

resulting multiple gain margins, which must be maintained by the input actuators,

can be jeopardized by actuator saturation and startup dynamics [87]. Therefore,

whenever possible, it is desirable to implement only stable controllers.

Several modifications of LQG theory have been proposed to obtain stable com-

pensators. Several of these techniques involve either modified Riccati equations

[64,112,113] or constrained weights [59, 60]. Thus the resulting controllers may sacri-

fice performance for controller stability. In [43, 86, 87], an augmented cost technique

was proposed to obtain stable controllers without unnecessarily sacrificing perfor-

mance. However, even though the authors in [87] give an excellent discussion on the
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implementation issuessurrounding stable versusunstable controllers, they focus on

multiple-model control, and thereforethe cost function to beoptimized is a weighted

averageof a number of systemcostsand doesnot give any insight into the trade-off

betweensystemperformanceand controller stability margin.

The purposeof this paper is to provide acontrol-systemdesignframeworkfor 7-/2-

optimal strong stabilization. To achievethis goalwe formulate the 7/2-optimal stable

control problem within the context of decentralizedstatic output feedbackcontrol

which providesa generalframework for fixed-structure dynamic controller synthesis

[14,34]. In particular, in order to guaranteestable stabilization, a multiobjective

problem, reminiscentof scalarization techniquesfor Pareto optimization, is treated

by forming a convexcombination of the 7/-/2norm of the closed-loopsystem and a

weighted 7t2 norm of the controller. It is shownthat as the trade-off parameter is

varied to obtain better 7/2 system performance,the controller eigenvaluesapproach

the imaginary axis. Thus the control engineercan decideif additional performance

improvementswarrant the resulting reduction in thestability margin of the controller.

Two examples from the stable stabilization literature are consideredhere. The

first example is a second-orderspring-mass-dampersystem and the secondexample

is a fourth-order two-masssysteminvolving two flexible modes. The 7/2 cost of the

stablecontrollersdevelopedfor the first example,though larger than that of the LQG

controller, wascomparableto the lowestcost possibleby a stable controller. For the

secondexample, the differencebetweenthe 7-12cost of the stalJie Controllerand the

unstableLQG controller is negligible.
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3.2. Stable "t/e-Optimal Control

In this section we state the 7/2-optimal stable stabilization problem. Specifically,

given the nta-order plant

2(t) = Ax(t) + Bu(t) + Dlw(t), t • [O, cx)), (3.1)

with noisy measurements

and performance variables

y(t) = Cx(t) + D2w(t), (3.2)

z(t) = E,x(t) + E2u(t), (3.3)

determine an nth-order strictly proper dynamic compensator

ic¢(t) = A¢xc(t) + Bey(t),

u(t) = C¢_¢(t),

(3.4)

(3.5)

such that the 7-/2 performance criterion

J(A¢, Be, C¢) =_ lim _E Z T (s)z(s) ds, (3.6)

is minimized and the compensator dynamics matrix Ac is asymptotically stable.

The closed-loop system (3.1)-(3.5) is given by

_(t) = _i:_(t)+ D_(t),

z(t) = k_(t).

te [0,_), (3.7)

(3.8)

The closed-loop transfer function from disturbances w to performance variables z is

given by

azw(8) A__JE(sIgt - 2_) -1J[_).
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Next, we definea weightedcontroller transfer function from plant output y to plant

input u by

Gc(s) =a E2Cc(slnc- Ac)-IBcD2.

Hence, the fixed-structure 7-/2-0ptimal stable control problem is defined as:

subject to

min ]]G_w(s)lt_
(At,Be,Co)

IIGc(s)ll_< _.

3.3. Design Equations

The 7-/2 norm of G_,(s) is given by

IIG_w(s)ll_= tr _)_, (3.9)

where (_ C N a is the unique nonnegative definite solution to the algebraic Lyapunov

equation

0 = AQ + OA T + 1). (3.10)

Furthermore, if Ac is stable, then the 7-/2 norm of the weighted transfer function of

the controller G¢(s) = E2C¢(sIn¢ - Ac)-_BcD2 is given by

IIG¢(s) H2 = tr QcCTR2C¢, (3.11)

where Q¢ E N TM is the unique nonnegative definite solution to the algebraic Lyapunov

equation

0 = AcQc + QcA T + BcV2B T. (3.12)

To obtain (3.11) and (3.12) in terms of/C, given by

Ac 0 0 ]
/C_ 0 Be 0 , (3.13)

0 0 Cc
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we definethe matrices QL o and Qa,_, i = 1, 2, 3, j = 1, as given by (2.16), so that

A¢ = QT, ICQT,,

Sc T T= QL2,1CQR_,,

Cc T T= QL3, Y_QR3,.

Thus, (3.11) and (3.12) become

Ila ( )ll T T r T= tr QeQR3,;£ QL3,R2QL_, QR3,, (3.14)

and

O: T T _:T T TQL,,ICQR,,Q¢ + QcQR,,_ QL,, + QL2,_QR2_V2Qa2_TQL_,, (3.15)

respectively.

In order to design 742-optimal stable controllers we pose the following multiobjec-

tive optimization problem: For p 6 [0, 1], determine K: that minimizes

-- T R T /CQT31, (3.16)J(/C) = (1 - p) tr QR + ptr QeQR3,1C QL3, 2QL3,

where Q C l_, Qc E N TM satisfy (3.10) and (3.15), respectively. Note that (3.16)

involves a convex combination of the 7i2 norm of the closed-loop system and the

weighted 742 norm of the controller. By including the 742 cost of the controller in

the objective function, we can guarantee that the controller is stable as long as the

objective function is finite. By varying p E [0, 1], (3.16) can be viewed as the scalar

representation of a multiobjective cost. To achieve the best closed-loop performance

with a stable controller, we only want to use the 742 cost of the controller as a con-

straint, and thus we set p > 0 to be small so that the contribution to the multiobjective

cost due to the 742 cost of the controller is negligible compared to the contribution

due to the 742 cost of the closed-loop system. Thus, the optimization routine will
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minimize the cost of the closed-loop system and not attempt to minimize the 7/_

cost of the compensator. However, increasing the trade-off parameter p will increase

the controller stability margin. Finally, note that by letting p -+ 0, we recover the

?/z-optimal control problem.

The necessary conditions for optimality can be derived by forming the Lagrangian

.... T R T )_ TL(P,Q,P¢,Q_,_) = (1-p)trQR+ptrQ_QR_,_ QL_, _QL_, QR_,

T T

+tr/5 [A(_ + (_/] T + I7] +trP¢[QL,,KQRHQ c

+QCQR,, _TQL,, + QT T TKQR_,V_QR_,_ QL,,], (3.17)

where t5 E 1_ and Pc E N n¢ are Lagrange multipliers. The partial derivatives with

respect to the free parameters in (3.17) are given by

cgL: _ AT p + PA + (I p)/_,
OQ

OP
OL

= ATcpc+ PcA¢+ pCfn_Cc,
OQ¢
0£

- AcQ¢ + QcA w + B¢V2B T,
oP¢

where

0£ T~~ T T ~~ T (1 T ~~ T-- p) 7) _EQC uOIC = Bu PQC u + Bu PV:Dy w + -

T T T
+ PQL3, R2QL T, K'QR_, QcQR3, + QL,, PcQcQR,, + QL_, QL:, _QR_, V2QR2, •

3.4. Optimization Algorithm

As noted in Section 2.3, one requirement of gradient-based optimization algorithms

is an initial stabilizing design. For plants satisfying the parity interlacing property,
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initialization can be accomplishedby using sufficiently low authority compensators

[24]. This wasaccomplishedhere by multiplying the control weight E2 by a scalar

77> 1. At sufficiently low authority, the LQG controllers tended to be stable. These

low authority, stable, full-order controllers generally can then be truncated using

an appropriate model reduction technique without destroying closed-loop stability.

For decentralized control, this technique can be implemented in a sequential manner

for each channel to obtain initializing gains with the given structure. These low

authority LQG designs are used to initialize a low authority optimization algorithm.

The optimized controller gains are then used to sequentially initialize higher authority

problems until eventually the desired controller authority level is regained. At this

point, the trade-off parameter p is varied until the best 7-/2 performance is attained

in the face of a desired controller stability margin.

3.5. Spring-Mass-Damper Example

6o]

Consider the spring-mass-damper system given by the state space realization [42,

:_(t) = -3 -4 1

y(t) 2 1 ] x(t).

The matrices D1, D2, El, and E2 are chosen to be

[ ] [35 0 D2=[0 1], EI=--
D1 - -61 0 ' 0 8.9443][0]0 , E2= 1 "

For the given data, the LQG controller is unstable. To initialize the 7-/2-optimal stable

control problem, the control weighting was increased by multiplying E2 by 77= 16,

as described in Section 3.4. This stable LQG design was used as a starting point

for the quasi-Newton algorithm which found optimal stable compensators as 77was
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decrementedback to unity, returning the control authority to its original value.

LCg_

i . .. 16

ency (racySec) ,¢ o

,21,

Stable H2

"_' (r,z_Vsec) # o

Freque_..y (racy,Sac) ,¢ o

Figure 3.1: Bode plots of LQG and stable 7t2 controllers (p = 0.0288)

As can be seen in Figure 3.1, increasing the authority toward a critical level

(77 = 8.58) causes the gain of the LQG controller to approach infinity, at which point

the low frequency phase jumps -180 ° and the gain begins to decrease, though the

controller must now be unstable to maintain closed-loop stability. At this point, it

can be seen that the gain of the 7/2-optimal stable controllers increase as well, though

not as drastically as the LQG design, and the 7/2-optimal stable controllers always

have a phase of 0 ° at low frequencies. The Nyquist plots of the LQG controller and

the stable controller at full control authority, as seen in Figure 3.2, show the poor

gain margins of the unstable LQG controller.

Since the loop gain with the 7/2-optimal stable controller in feedback is much

larger than that with the LQG controller at full authority, the impulse responses of

the LQG controller and the stable controller were simulated to compare the actual
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Figure 3.2: Nyquist plots of the loop gain for LQG (left) and stable 7/2 (right)

controllers (77= 1, p = 0.0288)

control effort needed to bring the closed-loop system back to the equilibrium. These

comparisons are shown in Figure 3.3. As expected, the performance of the system

with the LQG controller is better than the performance of the system with the 7/_-

optimal stable controller. However, note that even though the loop gain of the stable

controller is much larger than that of the LQG controller, the control effort used by

the stable controller is significantly less than that used by the LQG controller and

hence is less likely to saturate the system actuators, which could cause closed-loop

instabilities to occur when an unstable controller is used.

Once the control authority was increased to the desired level, the value of the

parameter p was varied to study the trade-off between the 7/2 cost of the system and

the stability level of the compensator. Figure 3.4 shows the position of the controller

(no = 2) eigenvalues as a function of p as well as the 7/2 cost of the closed-loop system
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Figure 3.4: Location of controller eigenvalues and 7-/2 cost versus p

as a function of p. By studying the resulting trade-off, the control engineer can decide

if subsequent cost reductions justify bringing the controller eigenvalues closer to the

stability boundary.

For p = 0.5, the controller transfer function is given by

-274.218 - 4183.8 (3.18)
G¢(s) = 82 + 38.324s + 43.539'

which has eigenvalues at Al ---- -37.152 and A2 = -1.1719, while, for p = 5 × 10 -z,

the controller transfer function is given by

-504.938 - 9744.5

G¢(s) = 82 + 60.543s + 0.086523' (3.19)

which has eigenvalues at A1 = -60.541 and A_ = -0.0014292.

Since, as stated in [42], the lowest possible cost via stable stabilization for this

example is given by a 4th-order controller, we used the present framework to obtain

stable 4 th-, 6 th-, and 8ta-order controllers to quantify the benefits of expanded-order
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control. Specifically,theseexpanded-order7-/2-optimalstable controllers wereinitial-

ized by adding one,two, and threestable modesto afull-order stable LQG controller,

at which point the optimization algorithm wasapplied. The correspondingclosed-

loop costs, computedat various levelsof control authority, areshown in Figure 3.5.

At lower levelsof controller authority, the stablecontrollershavenearly identical costs

to the LQG controllers. As the authority is increased,the closed-loopcost associ-

ated with the stable controllersbecomesnoticeably worsethan the LQG controllers,

howeverit is noticeably better than the best stable LQG design (i.e., the LQG de-

sign with 7? = 8.58). At the specified control authority (77 = 1), the dependence of

the augmented cost function on the controller cost was decreased by decreasing the

800 " :

LQ_ I

variable p.

S_lc

- \ I -- 2nd-Ordcr ]

750 _! -- 4th-Ordcr I

...... ] -- 6th-Order }
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450 'J
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Figure 3.5:7/2 cost versus control weighting for various-order stable 7-/2 controllers

(p = 0.0288)

J

As seen in Figure 3.6, the full-order controller has the highest 7/2 cost, followed

42



by the controller with one extra mode. The other two controllers, however, have

nearly identical closed-loopcosts, suggestingthat arbitrarily high-order controllers

may not achievesignificant performanceimprovements.Sincedecreasingp decreases

the dependence of the cost function J on the weighted 7t2 cost of the controller, the

controller loop gain increases greatly as p becomes smaller, as shown in Figure 3.7.
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Figure 3.6: Stable 7/2 controller cost versus p

2nd-Order 4th-Order 6th-Order 8th-Order

Fixed - Structure 627.11 622.20 621.73 621.67

Ganesh [42] (Optimal) ...... N/A 622.73 N/A N/A

Ganesh (Sub-Optimal) N/A 628.40 N/A N/A

Halevi [60] (First Result) 678.97 N/A N/A N/A

Halevi (After Tuning) 637.18 N/A N/A N/A

Stable LQG (r/= 8.58 713.02 N/A N/A N/A

Table 3.1:7/2 costs for various stable stabilization techniques

As can be seen in Table 3.1, the 7/2-optimal stable controllers obtained here com-
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pare favorably to earlier results. In [60], the design weights were constrained in such a

way as to yield stable controllers. Even with a tuning procedure, however, those costs

are larger than what was obtained using the present framework. In [42], a nonlinear

programming approach was used to obtain 7/2-optimal controllers, but only for SISO

systems. However, as can be seen, the 7i2 cost is slightly larger than the fourth-order

controllers designed here. In fact, the optimal controllers obtained in [42] had two

poles located at the origin, and thus the controller was merely conditionally stable.

The stability boundary was then pushed back to s = -0.5 to yield a stable controller.

It should be noted that the cost obtained by the second-order controller synthesized

using our method was 627.1, whereas in [60], it is stated that the minimum cost

possible by a second-order stable compensator is 628, though this may be simply a

numerical artifact. Also listed is the 7/2 cost of an LQG design with 77chosen as low

as possible while still yielding a stable controller, which is significantly larger than all

other methods considered.

3.6. Two-Mass Example

Consider the dynamic system [113] shown in Figure 3.8. The equations of motion

U

XI= y

k

ml @ m2
w

Figure 3.8: Two-mass system
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for this systemare given by

m,_:,(t)+ k(xl(t) - x2(t)) = u(t),

m2_:2(t)+ k (x_(t)- x,(t)) = o.

Here we consider the case of a colocated sensor and actuator pair, where the output

is given by y = xl. Letting rn_ = m2 = k = 1 yields the plant state space realization

_(t) =

y(t) =

0 0 1 0

0 0 0 1

-1 1 0 0

1 -100

1 0 0 o ] _(t).

x(t) +
0

0

1

0

As in [113], the matrices D1, D2, El, and E2 are chosen to be

0 0

0 0

0 0

u(t),

D 1 [lOlO], D2=[0 1], El= 0 0 0 0 ' 0.01 "

68 0

For this example, a full-order and a reduced-order 7/2-optimal stable controller

were designed. The control authority was chosen to be sufficiently low so that the

LQG controller was stable. This controller was then used to initialize the optimization

algorithm.

The same general trends can be observed here as in the first example, though in

this case, even when full authority is achieved, the 7-/2 cost of the full-order stable

controller rivals the performance of the unstable 7/2-optimal LQG controller, which

would be apparent in Figure 3.9 if the curves were not directly on each other. In fact,

the relative difference in the 7t2 costs is merely 9.7114 x 10 -4 %. For this reason,

expanded-order controllers could not give further cost improvements to justify their

increased complexity, and thus were not designed for this example. Also, the initial

value of p was sufficiently small that further reductions did not improve the 7/2 cost of
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the closed-loop system. Table 3.2 compares the performance of the _/2-optimal stable

controller designs with the LQG controller, the best stable LQG controller (i.e., the

LQG controller with r/chosen as low as possible while still yielding a stable controller),

and the full-order controller designed in [113], which used an over-bounding approach

along with parameter tunings to obtain stable controllers.

2nd-Order 4th-Order

LQG N/A 16.175703

Fixed - Structure 27.9340 16.175782

16.261138Wang [113]
Stable LQG (r/= 12.21)

N/A

N/A 34.334324

Table 3.2:7/2 costs for various stable stabilization techniques

The ability of this stable controller to achieve an 7-/2 performance nearly identical

to that of the LQG controller was then explored. After running numerous examples,
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it appearsthat a minimum phaseopen-loopstable plant (suchas the first example)

will yield a significant performancedegradationwhenthe controller is constrainedto

be stable. However,a minimum phase,open-loopunstable plant does not seemto

exhibit this lack of performance,as demonstratedby this example. Further investi-

gation seemsto show that 7/2-optimal stable controllers designedfor non-minimum

phase,open-loopunstableplantswill alsoshowperformancedegradationoveranLQG

controller, whereasno appreciablelossof performanceoccurredwhen a 7/2-optimal

stable controller wasdesignedfor a non-minimum phase,open-loopstable plant.

3.7. Conclusion

In this chapter we investigated a scheme to synthesize 7/2-optimal controllers by

including the 7i2 cost of the controller in the Lagrangian and using a multiobjective

optimization technique. The problem was formulated in a decentralized static out-

put feedback framework, which facilitated the use of a quasi-Newton optimization

algorithm. This technique was applied to two numerical examples. It was numeri-

cally shown that for some systems, namely minimum phase, open-loop unstable or

non-minimum phase, open-loop stable plants, a stable controller can rival the perfor-

mance of an unstable 7/2-optimal LQG controller and yet not be constrained by the

loop margins of unstable controllers. For other systems, however, there could be a

significant degradation in performance by requiring the controller to remain stable,

although this technique provided controllers yielding the minimal 7t2 closed-loop cost

for all stable linear controllers.
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CHAPTER 4

7-/2-Optimal Synthesis of
Controllers with Relative

Degree Two

4.1. Introduction

It is well known that modern multivariable control design frameworks such as 7t2

and 7/_ control yield dynamic compensators with relative degree zero or one. Hence,

the structure of the dynamic feedback controller is such that the measured system

output appears explicitly in the control signal or in the control rate signal [85]. In

the single-input/single-output system case, the resulting controller transfer function

is non-strictly proper with relative degree zero or strictly proper with relative degree

one. In this case, the Bode plot of the controller transfer function at best rolls off at

20 dB per decade. Alternatively, for relative degree r controllers, the Bode plot of

the compensator has a high frequency roll-off of 20r dB per decade.

High frequency roll-off is particularly useful when the system under consideration

is a lightly damped flexible structure. Since flexible structure models are by necessity

truncated to a finite number of modes, it is desirable for the frequency response to

roll off as quickly as possible after the gain crossover frequency so that unmodeled

high frequency system dynamics are not excited by the controller dynamics.
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For single-input/single-output systems,where the 7-/2norm correspondsto the

areaunder the Bode plot and the °do_ norm corresponds to the maximum magnitude

of the Bode plot, roll-offrates cannot be specified solely by minimization techniques on

these norms. Loop shaping weighting functions can be used in the controller design

process, but these specify the frequency where the roll-off starts, not the roll-off

rate. Furthermore, these techniques also tend to result in high-order controllers when

frequency weighting is included in the design process. In this section we extend the

fixed-structure controller design framework of [14, 95] and [34] to design _2-optimal

relative degree two controllers for multi-input/multi-output systems. Since we cast

the relative degree two design problem within the fixed-structure control framework,

fixed-order (i.e., full- and reduced-order) controllers can be designed with increased

roll-off rates at the gain crossover frequency. Even though the proposed framework

can be easily extended to include desired weighting functions for loop shaping, we do

not do so here to facilitate the presentation.

The proposed °d2-optimal relative degree two controller design technique is applied

to several structural control problems, showing that the resulting relative degree two

controller incurs minimal increase in 7-/2 performance over the optimal LQG controller

while enforcing a 20 dB per decade increase in the roll-off rate at the gain crossover

frequency.

4.2. 7-/2-Optimal Relative Degree Two Control

In this section we state the 7-/2-optimal relative degree two control problem. Specif-

ically, given the nth-order stabilizable and detectable system

2(t) = Ax(t) + Bu(t) + Dlw(t), t • [0, c_),

y(t) = Cx(t) + D2w(t),
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z(t) = Elx(t) + E2u(t),

determine an nth-order relative degree two dynamic compensator

(4.3)

:i:_l(t)= A¢_xc_(t)+ B¢_y(t),

2_2(t) = A¢2xc2(t)+ Bc_v(t),

v(t) = Cc_x_(t),

u(t) = C_,x_(t),

(4.4)

(4.5)

(4.6)

(4.7)

A
where Xcl(t) C IRnc_, xc2(t) C R nc2, and nc = no1 + n¢2, such that the 7/2 performance

criterion

J(Ac, Ac_,Bc,,Bc_,C¢, C¢2) zx lim 1E ft [xT(s)RlX(s) + uT(s)R2u(s)] ds, (4.8)
' ' t-,oo t J0

is minimized.

Note that the dynamic controller (4.4)-(4.7) corresponds to a cascade interconnec-

tion of the two controllers in the feedback loop (see Figure 4.1) so that the controller

transfer function realization is given by

c (4=ac, o ,

where

Note that since Bc2 is always multiplied with C¢1, Bc2C¢_ can be considered a single

free parameter, thus leaving only five controller gains over which to optimize, instead

of six. Finally, we note that this framework can be easily extended to address the

design of (vector) relative degree r controllers by considering a cascade interconnection

of r dynamic controllers in the feedback loop.
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4.3.
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Figure 4.1: Relative degree two controller set-up

Relative Degree Two Controller Synthesis

In this section we use the decentralized static output feedback framework as de-

scribed in Section 2.1 to design 7/2-optimal relative degree two dynamic compensators.

Specifically, we define

K: =Ablock-diag [A¢_, Ac_, Be,, B¢_C_, , Cc2] .

Now, if ,4 is asymptotically stable for a given feedback gain K; E R (2'_¢+m)×(2"c+0 it

follows that the 7i2 performance criterion (4.8) is given by

J(1C) =[]Gz_(s)][_ = tr/5_, (4.11)

where P E N a is the unique nonnegative definite solution to the algebraic Lyapunov

equation

o = xrk + P_i +/_. (4.12)

Now, the necessary conditions for optimality can be derived by forming the La-

grangian

E(/5, Q, K:)= tr {/5_ _[_Q [_Tf:_ _[_ _az_ _.[_ /_]}, (4.13)
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where(_ E l_ is a Lagrangemultiplier. The gradient expressionswith respectto the

free parametersin (4.13)aregiven by

Of_.
= ._(2+_A _ + ?,

oP

0£ _ fiTp + PA +/_,

oQ
0_._ T ~ " T T - - T ] -T T

i=1,2,3,4,5, j=l,

(4.14)

(4.15)

(4.16)

"DT f-T y'T
where T = I + _-y_,-,_ ,,. and

t:l = A¢_, K:2 = A_2, K:a = B_,, /(:4 = B_2Cc,, K:s = Cc_.

4.4. Control Design Process

=
V

The initial stabilizing design for the relative degree two controller was obtained

by computing the balanced truncation of the full-order LQG controller to obtain a

reduced-order LQG controller corresponding to the controller in the feedback loop

with the lower order. Note that since two controllers are being synthesized, it is not

necessary for this first truncated controller to stabilize the system. This first designed

controller was augmented to the plant. If G¢_ is designed first, the augmented plant

realization is

A 0 B ' D1 ]

G(s) ~ Bc, C Acx I B¢,DIBc, D2,
o c [_o_i o '
E, :

whereas if Go2 is designed first, the augmented plant realization is

(4.17)

A o ]Ac_ Bcz
I

DC¢2 .]. O_ DL[
E2Cc,I o ,EoJ

(4.18)
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Note that in the first case, the /92 term is identically zero, whereas in the second

case, the E2 term is zero. Thus these augmented matrices result in a singular control

problem. This was overcome by replacing these terms with nonzero matrices struc-

tured such that D1D w = 0 or EWE2 = 0, as appropriate. Once an LQG controller

was designed on this "artificial" system, the dynamics of the original system were

tested, and if the closed-loop was asymptotically stable, these designed controllers

were used as the initial controllers for the gradient search algorithm. For details of

the algorithm, see [35].

4.5. Two-Mass Example

Consider a two-mass-spring-damper system with a colocated sensor/actuator pair

and state space realization in real normal coordinates given by

=

y(t) =

-0.0002

-0.2208

0

0

-0.0545

0.2208 0 0

-0.0002 0 0
0 -0.0103 1.4320 x(t) +

0 -1.4320 -0.0103

0.0819 -0.0352 0.8181 ] x(t).

-0.1439

0.2168

-0.0426 u(t),

1.1890

The weighting matrices D1, D2, El, and E2 were chosen so that LQG synthesis would

place a notch at the second mode. This is accomplished when [40]

[00] ] []1 0 D2=[O 1], 1 0 0 0 0
DI= 0 0 0 0 0 0 ' E2= 1

0 0

For this system, the two controllers:in the feedback loop (Gel and Go2) were chosen

to be of order two. Initializing reduced-order LQG controllers were designed, and the

gradient search algorithm was initiated. The Bode plots of the loop gain of the full-

order LQG controller and of the relative degree two controller, along with dotted lines

representing the respective high frequency asymptotes, are shown in Figure 4.2. The
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Figure 4.2: Bode plots of LQG and relative degree two controllers

7-/2-optimal LQG cost is 3.9734 and the 7-/2-optimal relative degree two controller is

4.0743 which corresponds to only a 2.5% increase over the 7-/2-optimal LQG controller

cost. This marginal increase in the 7"/2 cost is not surprising since 7-12-optimal relative

degree two controllers are sought.

The transfer function for the LQG controller is

-0.9090s 3 - 0.107382 - 1.8660s - 0.1817

Gc(LQG)(8) : 84 -t- 0.3629s 3 + 1.2425s 2 + 0.6170s + 0.1443'

which has natural frequencies at 0.345 rad/sec and 1.10 rad/sec. The relative degree

two controller transfer function is given by

-99.9827s 2 " 2.0960s - 205.2481

Gc(Rel. Deg. 2)(8) -- 84 .__ 64.6193s 3 + 46.117082 + 34.9138s + 77.6907"

This transfer function has a natural frequency at 1.02 rad/sec and break frequencies

at 0.862 rad/sec and 0.015 rad/sec, Thus it is seen in this case that constraining the
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controller to be of relative degree two does not push the controller poles out to such

high frequencies that the extra 20 dB/decade roll-off is not useful.

4.6. Three Mass Example

Consider the three-mass system given by the state-space realization ([52])

=

y(t) =

0 0 010

0 0 001

0 0 000

-1 1 0000

1-2 1000

0 1-1000

1 1 0 0 0 0 ]x(t).

0

0

1
x(t)+

0

0

0

0

0

1

The weighting matrices D1, D2, El, and E2 are chosen to be

0 0-

0 0

0 0

Dl= 1 0

0 0

0 0

[110000] [0], D2=[0 1], E,= 0 0 0 0 0 0' E2= 1 "

For this system, two different relative degree two controllers were designed. The first

was designed with the first controller in the feedback loop of order two and the second

of order four. The Bode plots of the loop gain of the full-order LQG controller and

of this relative degree two controller are shown in Figure 4.3. Again, the increase in

the 7-/2 cost is only 9% above the optimal value.

The transfer function for the LQG controller is

-2.4070s 5 - 0.1479s 4 - 10.1266s 3 - 1.3616s 2 - 8.3374s - 2.000

Cc(LQG)(S) -_ s 6 + 3.1221s 5 + 8.8738s 4 + 15.8141s 3 + 21.5012s 2 + 17.8508s + 13.3444'

which has natural frequencies at 1.30 rad/sec, 1.55 rad/sec, and 1.82 rad/sec. The

relative degree two controller transfer function is given by

-332.2810s 4 - 11569s a - 679770s 2 - 1186900s - 293090
t_

uc(RD 2)ts) = s6 + 182.4514s5 + 12699s 4 + 392630s3 + 4634100s 2 + 3606700s + 221210d"
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Figure 4.3: Bode plots of LQG and relative degree two controllers

This transfer function has natural frequencies at 0.715 rad/sec, 34.6 rad/sec, and

60.1 rad/sec. In this case, the relative degree two controller does have much higher

frequency poles, so that the extra 20 dB/decade roll-off does not occur until higher

frequencies are encountered, as seen in the figure.

The second relative degree two controller was designed with the first controller in

the feedback loop of order four and the second of order two. The Bode plots of the

loop gain of the full-order LQG controller and of this relative degree two controller are

shown in Figure 4.4. For this configuration, however, the 7i2 cost of the relative degree

two controller is less than that of the first relative degree two controller designed. In

particular, the increase in the 7/2 cost for this controller is only 2.9% above the

optimal value.

The transfer function of this relative degree two controller is

-130.3438s 4 - 582.6117s 3 - 258.0451s 2 - 679.4487s - 176.8302

Gc(RD 2)(s) = S 6 + 56.0271S 5 + 811.7752S 4 + ll18.0S 3 + 2196.9S 2 + 1630.2S + 1186.4'
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Figure 4.4: Bode plots of LQG and relative degree two controllers

which has natural frequencies at 0.975 rad/sec and 1.30 rad/sec, and break frequencies

at 0.0417 rad/sec and 0.0326 rad/sec. In this case, the relative degree two controller

does not have higher frequency poles, so that the roll-off is more pronounced than in

the first configuration.

4.7. Coupled Rotating Disk Example

Consider the coupled rotating disk problem given in [22] with state space realiza-

tion in real normal coordinates given by

=

-0.1610 1 0 0 0 0 0 0

-6.0040 0 1 0 0 0 0 0

-0.5822 0 0 1 0 0 0 0

-9.9835 0 0 0 1 0 0 0

-0.4073 0 0 0 0 1 0 0

-3.9820 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0

0

0.00640

0.00235

0.07130

1.00020

0.10450

0.99550

u(t),
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y(t) = [1 o o o o o o o ]x(t).

The weighting matrices D1, D2, El, and E2 are chosen to be

D 1 --

0

0

0.00640

0.00235

0.07130

1.00020

0.10450

0.99550

0

0

0

0

0 '

0

0

0

D2=[0 1], El----

0

0

0

0

0.00055

0.01100

0.00132

0.01800

T
0

0

0

0

0

0

0

0

1 "

For this system, two different relative degree two controllers were designed. The first

was designed with the first controller in the feedback loop of order two and the second

of order six. The Bode plots of the loop gain of the full-order LQG controller and of

this relative degree two controller are shown in Figure 4.5. Here, the increase in the
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Figure 4.5: Bode plots of LQG and relative degree two controllers

7i2 cost is a scant 0.0238% above the optimal value.

The transfer function for the LQG controller is
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-0.1102s 7 - 0.0210s 6 - 0.6637s 5 - 0.0843s 4 - l.l105s 3 - 0,079382 - 0.4500s - 0.0152

Gc(LQG)(S) = s8 + 1.3183s T + 6.8596s 6 + 7.3937s 5 + 14.1279s 4 + II.4920s 3 + 9,2199s 2 + 4,5193s + 1.3859'

which has natural frequencies at 0.548 rad/sec, 0.820 rad/sec, 1.41 rad/sec, and 1.86

rad/sec. The relative degree two Controller transfer function is given by

-28.0400s 6 - 8051.5s 5 - 1122.6s 4 - 20797s 3 - 1486.7s 2 - 9550.1s - 321.8893

Gc(RD 2)(s) = sS + 569.3318s? + 75307s 6 + 93453s 5 + 244920s4 + 215410s3 + 186610s2 + 95718s + 29437"

This transfer function has natural frequencies at 0.549 rad/sec, 0.819 rad/sec, and

1.40 rad/sec, and break frequencies at 0.00485 rad/sec and 0.00276 rad/sec.

The second relative degree two controller was designed with the first controller in

the feedback loop of order six and the second of order two. The Bode plots of the

loop gain of the full-order LQG controller and of this relative degree two controller are

shown in Figure 4.6. For this configuration, however, the H2 cost of the relative degree
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Figure 4.6: Bode plots of LQG and relative degree two controllers

two controller is slightly more than that of the first relative degree two controller
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designed,but the increasein the 7-/2 cost for this controller is only 0.864% above the

optimal value.

The transfer function of this relative degree two controller is

-0.2916s 8 - 0.1042s 5 - 0.7773s 4 - 0.1187s 3 - 0.3535s 2 - 0.0118s - 2.9883 x 10 TM

Gc(RD :_)(s) = sS + 3.1635sT + 7.3610S6 + 10.8948s 5 + 11.4236s 4 + 8.2630s3 + 3.9038s2 + 1.0973s ÷ 2.0906 X 10 -9,

which has natural frequencies at 0.548 rad/sec, 0.820 rad/sec, 1.41 rad/sec, and 1.86

rad/sec.

4.8. Conclusion

In this chapter we proposed a scheme to synthesize 7/_-optimal relative degree two

controllers by cascading two controllers in the feedback loop and optimizing over the

five free controller parameters. The problem was formulated in a decentralized static

output feedback framework, which facilitated the use of a quasi-Newton optimization

algorithm. This technique was applied to three numerical examples. It was shown that

constraining the controller to have a relative degree of at least two only marginally

increased the 7-/2 cost of the closed-loop system, though it was noted that the order

of the separate controllers in the feedback loop does significantly affect the _2 cost

of the closed-loop system and the natural frequencies and break frequencies of the

controller dynamics.
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CHAPTER 5

Robust Fixed-Structure Controller

Synthesis using the Implicit Small
Gain Bound

5.1. Introduction

One of the principal objectives of robust control theory is to synthesize feed-

back controllers with a priori guarantees of robust stability and performance. In

#-synthesis [37, 97] these guarantees are achieved by means of bounds involving

frequency-dependent scales and multipliers which account for the structure of the

uncertainty as well as its real or complex nature. An alternative robustness approach

involves bounding the effect of real or complex uncertain parameters on the 7"/2 per-

formance of the closed-loop system. These guaranteed cost bounds take the form of

modifications to the usual Lyapunov equation to provide bounds for robust stability

and 7/2 performance.

A diverse collection of guaranteed cost bounds have been developed. An overview

of many of the early guaranteed cost bounds can be found in [12], while positive-

real-type guaranteed cost bounds are discussed in [47]. More recently, Popov-type

guaranteed cost bounds have provided links with frequency-dependent scales and

multipliers while providing reliable bounds for the peak real structured singular value
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[15,52,106]. Finally, the introduction of shift terms has beenshown to reducethe

conservatismof guaranteedcost bounds [38,54,74] for structured real uncertainty

without requiring frequency-dependentscalesand multipliers.

The goal of this researchis to explore the applicability of the implicit small gain

guaranteedcost bound of [54] to controller synthesis. As shown in [54], unlike the

quadratic stability bounded-realtype boundof [76,100],the implicit small gain bound

can distinguish betweenreal and complexuncertainty and is particularly effectivein

capturing internal uncertainty structure. For flexibility in controller synthesis,we

adopt the approach of fixed-structure controller synthesis [62] which allows consid-

eration of arbitrary controller structures, including order, internal structure, and

decentralization [34].

To demonstratethe fixed-structure/implicit small gain approachto robust con-

troller synthesis,we consider two examplesthat havebeen addressedby meansof

alternative guaranteedcost bounds. The first example,which involves two flexible

modes, was used in [40] to illustrate the Maximum Entropy technique, while the

secondexample,which involves three flexible modes,was consideredin [52,106] to

illustrate fixed-structure Popovsynthesis.

5,2. Robust Stability and Performance Problem

In this section we state the robust stability and performance problem. This prob-

lem involves a set U c ]Rn×n of uncertain perturbations da of the nominal system

matrix A. The objective of this problem is to determine a fixed-order, strictly proper

dynamic compensator (Ac, Be, C¢) that stabilizes the plant for all variations in/4 and

minimizes the worst-case 7/2 norm of the closed-loop system. In this section and the

following section no explicit structure is assumed for the elements of/4. In Section 5.4
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the structure of/,/will bespecified.

Robust Stability and Performance Problem. Given the nth-order stabiliz-

able and detectable system

2(t) = (A + AA)x(t) + Bu(t) + D,w(t),

y(t) = Cx(t) + D2w(t),

t e [o,_),

determine an nth-order dynamic compensator

:_c(t)= Acx¢(t) + B¢y(t),

u(t) = C_xc(t),

(5.3)

(5.4)

such that the closed-loop system (5.1)-(5.4) is asymptotically stable for all AA E/,/

and the performance criterion

J(Ac, Bc, C_) _= sup limsuplE ft
_AeU t_ t JO [xT(s)Rlx(s) + uT(s)R2u(s)]ds' (5.5)

is minimized.

For each uncertain variation AA E U, the closed-loop system (5.1)-(5.4) can be

written as

/_(t)= (ft + _ft)_(t) + bw(t),

whereAft_& [AA 0]0 0 "

5.3.

t • [0,_), (5.6)

Sufficient Conditions for Robust Stability and

Performance

In practice, steady-state performance is only of interest when the undisturbed

closed-loop system is robustly stable over/g. The following result is immediate.

Lemma 5.1. Let (Ac, Be, C_) be given and assume that ,3,+Aft, is asymptotically
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stable for all AA E H. Then

J(Ac, B¢,Cc)= sup trPA_iV,
AAEU

where Pa_ E N '_ is the unique nonnegative definite solution to

0 = (4 + AA)TP_ + P_(,_ + A,_)+ _.

(5.7)

(5s)

The key step in guaranteeing robust stability and performance is to replace the

uncertain terms in the Lyapunov equation (5.8) by a bounding function ft.

Theorem 5.1 [12]. Let (Ac, Be, C¢) be given, let ft :N a -+ S a be such that

A_T/5 +/5/k._ ____(/5), AA e H, /5 • N-_, (5.9)

and suppose there exists t5 E 1_ satisfying

0 = _T/5 + p_ + f_(/5) + _. (5.10)

Then (A + AA,/_) is detectable for all AA C H if and only if ,4 + AA is asymptotically

stable for all AA • H. In this case,

DAA<_P, AAebl,

where P_x_i is given by (5.8), and

J(A_,B¢,C_) <_ tr PV.

(5.11)

(5.12)

5.4. Uncertainty Structure and the Implicit Small

Gain Guaranteed Cost Bound

We now assign explicit structure to the set H and bounding function ft(/5). Specif-

ically, the uncertainty set H is defined by

T

H={AAeRn×n.AA=ES, A,,15i[<_7-1, i=I,...,r}, (5.13)
i=1
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where-y is a positive number and, for i - 1,..., r, Ai E R n×n is a fixed matrix denoting

the structure of the parametric uncertainty and 5i is an uncertain real parameter. Note

that b/given by (5.13) includes repeated parameters without loss of generality. For

example, if 51 = 52 then replace A1 with A1 + A2 and discard 52 and A2. Furthermore,

[51 52],thenAA=/4 includes real full block uncertainty. For example, if AA = 53 54

[1 O] andlikewiseforA2, Aa, andA4. Finally, fori=__,i_a 5iAi, where A1 = 0 0

1,... ,r, letting Ai = BiCi, where Bi C R n×q_, Ci E R q_×n, and qi <_ n, and defining

Bo _ [ B1 ... Br ] and Co _ [ C w "" C_ ]w, b/ can be written as the real

parameter uncertainty set considered in [37]

bl a= {AA E Rn×n : AA = BoACo, A C A_,}, (5.14)

where

v

V

A_ _ {A e Rq×q: A = block-diag[5,Iq,...,5rIq,],lS, l <_ 7-1, i = 1,...,r}, (5.15)

A

and where q -- _=xqi- Since an uncertainty set of the form (5.14) can always

be written in the form of (5.13) by partitioning B0 and Co as above and defining

Ai a= BiCi, i -- 1,..., r, robust stability of ,4 + Aft. for all AA E h¢ is equivalent to

the robust stability of the feedback interconnection of G(s) _ Co(sIa - A)-l/}0 and

A, where/}0 ___a[ BW 0 ]T, Co _-_ [ Co 0 ], and A e A._.

With the uncertainty set L/ given by (5.13), the closed-loop system (5.6) has

structured uncertainty of the form

r

= (5.16)
i=1

where

fi, iz_ [A, 0] i=l, r.= 0 0 ' "'"
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We now introduce a specific choice of the bound _(/5) satisfying (5.9) for the

structure of L/as specified by (5.13). For i = 1,... ,r, let Si E IRa×'_ and define

2, +

Note that -Zi <_ a(Si + _w) < Zi for all a e [-1, 1]. If Si is skew symmetric

then Zi -- 0. Furthermore, for i = 1,...,r, define Ii zx [5/ ._w][5i AT]t, where

(.)t denotes the Moore-Penrose generalized inverse. Note that ]i is symmetric and

idempotent, that is, ]i = ][ = 1_. Furthermore, since ]i[Si tiff] = [£ _T], it

follows that ]iSi = 5_i and f4i]i = fi, i. If Si = fi-i and fi, i is an EP matrix [21], that is,

_(Ai) = TC(-4T), then ii = ,4J-4i- Recall that normal matrices (and thus symmetric

and skew-symmetric matrices) are EP.

Proposition 5.1 [54]. For i = 1,...,r, let ai E R, fli > 0, and let Si E IR_×a.

Then (5.9) is satisfied with gt(P) given by

r

i=1

(5.17)

Remark 5.1. As discussed in [54], ifhi is assumed to be complex for some i, then

it can be shown that fl(/5) given by (5.17) does not satisfy (5.9). Hence, unlike the

quadratic stability bound of [76, 100], the bound (5.17) can distinguish between real

and complex uncertainty.

Combining Theorem 5.1 with Proposition 5.1 yields the following result.

A ~ 2 r " ~ ~
convenience define the shifted dynamics matrix fis_ = A + 7- _,i=1 ai_iAiSi.

For

Theorem 5.2. For i = 1,..., r, let ai E R, _i > 0, and let _5i E R _x_. Further-

more, suppose there exists a matrix/5 E 1_ satisfying

r

i=1

(5.18)
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Then (ft+ Aft,/_) is detectable for all AA E h¢ if and only if ft + Aft is asymptotically

stable for all AA E b/. In this case,

where Pt,2 satisfies (5.8), and

/5 i _</5, AA E b/, (5.19)

J(Ac, Be, C¢) _< tr PV. (5.20)

Remark 5.2. If fts_ is asymptotically stable then the existence of a matrix t5 E

1_ satisfying (5.18) is equivalent to the existence of a frequency-domain condition

guaranteeing robust stability of ft + Aft, AA E /4, in terms of an implicit small

gain condition involving the shifted dynamics matrix fts.y which is a function of the

uncertainty set bound 7. For details see [54].

To apply Theorem 5.2 to controller synthesis, we use the Riccati equation (5.18) to

guarantee that the closed-loop system is robustly stable. This leads to the following

optimization problem.

Optimization Problem. Determine (A¢, Be, C¢) that minimizes if(At, Bc, C_) _=

tr PI_, where /5 E N a satisfies (5.18) and such that (Ac, Be, C¢) is controllable and

observable.

The relationship between the Optimization Problem and the Robust Stability and

Performance Problem is straightforward, as shown by the following proposition.

Proposition 5.2. Let (A¢, Bc, C¢) be given. If/5 E l_ satisfies (5.18) and (ft +

Aft, E) is detectable for all AA E U, then ft + Aft, is asymptotically stable for all

AA E/4, and J(A_,B¢,C_) <_ ff(Ac, B¢,C¢).

Proof. Since (5.18) has a solution/5 E i_ and (ft + Aft,/_) is detectable for

all AA C U, the hypotheses of Theorem 5.2 are satisfied so that robust stability and
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robust performanceare guaranteed. Now, J(Ac, Bc, Co) <_ (]'(A¢, B¢, C_) is merely a

restatement of (5.20). []

It follows from Proposition 5.2 that the satisfaction of (5.18) along with the generic

detectability condition leads to robust stability along with an upper bound for the "/'/2

performance. Hence, by deriving necessary conditions for the Optimization Problem

we obtain sufficient conditions for characterizing dynamic output feedback controllers

guaranteeing robust stability and performance.

5.5. Robust Controller Synthesis via the Implicit

Small Gain Guaranteed Cost Bound

[_ :: : :_ 7: : =z z:

In this section we state Constructive Sufficient Conditions:for characterizing fixed-

order (i.e., full- and reduced-order) robust controllers. These results are obtained

by minimizing the worst-case 7-/2 cost bound (5.20) subject to (5.18). The following

result is required for the statement of the main theorem.

Lemma 5.2 [62]. Let (_, 15 E N n and suppose that rank Q P = n_. Then there

exist nc x n matrices G, F and an invertible matrix M C ]Rncxnc, unique except for a

change of basis in R "° , such that

Q[=} = GTM[ ', ra T = Inc. (5.21)

A A
Furthermore, the n x n matrices 7 = GTF and T± = In -- T are idempotent and have

rank nc and n - no, respectively.

To apply Theorem 5.2 to robust controller synthesis, let S_, i = 1,..., r, have the

form

O_,_xn On_×n_ '
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where Si E R n×n. With Si, i = 1,..., r, given by (5.22) it can be shown that

onxnc] 0nxnc]Or,cx,_ Or,o×.c ' O,,cx. On¢×.o '

where ]_ = [Si AT][Si AT] t and Z_ = [(Si + S[)2] ½. Furthermore, for convenience

in stating the main theorem, define the notation

r

As_ = A + 7 -2 E aifliAiSi.
i=1

Theorem 5.3. Let n¢ _< n and suppose there exist matrices P, Q,/5, (_ c N n

satisfying

0 = [A,.r+ E 7-2fi_AiAT(p+P)]Q+Q[As_+E 7-2fl_A, AT(p+D)] w+V1
i=1 i=1

-Q_Q+ TIQ_Qr T, (5.24)
r r

0 = (As.y-QE+_-_ 7-2fl_A, ATp)Tp+p(A,.y-QE+___ 7-2fl_AiATp)
i=1 i:1

r

+ E "7-2 fl_/5 AiAT/5 + PEP- TT PEPT±, (5.25)
i=1

r r

7 /3iAiAi P)0 = (As._-EP+E"t'-2fl_A, ATp)Q+Q(A_.y-EP+E -2 2 T T
i=1 i=l

-tQEQ- _-LQEQv T, (5.26)

rank (_ = rank/5 = rank O/5 = no, (5.27)

and let Ac, Bc, and C¢ be given by

I"

A¢ = r(A,,_ - Q_- EP +'),-2Efl_A, ATp)GT,
i=l

Be = rocTvi -_,

(5.28)

(5.29)

C¢ = -R2-1BT pG T. (5.30)
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Then (.A+ AA,/_) is detectablefor all AA E H if and only if 2 + A,4 is asymptotically

stable for all AA E H. In this case, the worst-case 7-/2 performance criterion (5.7)

satisfies the bound

T

J(A¢,B¢,C¢) < tr [PV_ +Q(PEP--TTpEPT_L--_-2E.[='A_ATp)] (5.31)
i=1

tr [QR1 + P(QEQ - 7±QEQr T)

r

i=1

Proof. The proof is constructive in nature. We first obtain necessary conditions

for the Optimization Problem and show by construction that these conditions serve as

sufficient conditions for closed-loop stability. Specifically, it can be shown (see [13] for

a similar construction) that the existence of P, Q,/5, Q E l_ satisfying (5.23)-(5.26)

implies the existence of/5 E l_ satisfying (5.18) where t5 is given by

/5= [P+/5 --/5GT ]-GP GPG T "

Now, the proof of robust stability and the upper bound on 7-/2 performance (5.5) for

all uncertain perturbations AA E H follows from Theorem 5.2.

Next, to optimize (5.20) subject to constraint (5.18) over the open set

r

i:I

is asymptotically stable and (A¢, Be, C¢) is minimal}

form the Lagrangian

£(Ac, B¢,Cc, Q,[_,A) _= tr [A/SV + _{fiT/5 +/Sfi.s_ +/_

r

+ E ["_-2(ol2sTsi + _2P2_iATp ) + _f-l_/--1101i]2 i + _/-2ii] }],

i=1

(5.33)
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where the Lagrange multipliers A >_ 0 and Q E R a×'_ are not both zero. We thus

obtain

7" r

_ -2 x-" o2 A AT/5_A '7-20£ _- (A-s_ +_ 2_.,p/ i i )_¢ +(_(As_ + E_3_2AiA'T-p)T ..1_ A?.

(0P i=1 i=1

(5.34)

Setting _a_: = 0 yields

r r

0 = (fi,._ + "7-2 E_3_A, ATp)(_ + O,(As._ + '7-2 E_A_ATp) w + AV.
i=1 i=1

(5.35)

Since J]s_ + '7-2 _--_L1 _ AiAT/5 is assumed to be asymptotically stable, setting A = 0

implies Q -- 0. Hence, it can be assumed without loss of generality that A = 1.

Furthermore, (_ is nonnegative definite. The remainder of the proof follows as in [13].

Briefly, the principal steps are as follows.

Step 1. Compute oc o£ and o____L
cgAc ' OB¢ ' OCt "

V

Step 2. Partition (5.18) and (5.35) into six equations (a)-(f) corresponding to the

n x n, n × nc, and nc x n¢ sub-blocks of/5 and (_, respectively. Next, since

the compensator triple (Ac, Be, C¢) is controllable and observable, using a

minor extension of the result from [2] and Lemma 12.2 of [115], (c) implies

that the lower-right n¢ x nc block of/5 is positive definite. Using similar

arguments we can show that the lower-right n¢ × nc block of (_ is positive

definite. See [13] for details.

L-

Step 3. Form (b) times the n x nc sub-block of (_ plus the n¢ x n¢ sub-block of

times (c) to define the projection matrix T and the new variables P, Q,/5,

Q, G, and F.
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Step 4. Use the result of Step 1 and Step 3 to solve for the compensatorgains

(5.28)-(5.30).

Step 5. Manipulate (a), (b), (d), and (e) to yield (5.23)-(5.26). D

Step 6. Use the results of Step 3 to show that (5.20) is equivalent to (5.31).

For a detailed exposition of a similar proof, see [13]. []

Remark 5.3. In the full-order case, set nc = n so that G = F = 7- = In and

T_L = 0. In this case the last term in each of (5.23)-(5.26) is zero and (5.26) is

superfluous.

Theorem 5.3 provides constructive sufficient conditions that yield dynamic feed-

back gains A¢, Be, and Cc for robust stability and performance. When solving (5.23)-

(5.26) numerically, the values of 7, ai, /7i, and Si, i = 1,..., r, can be adjusted to

examine trade-offs between 7t2 performance and robustness. As discussed in [54], to

further reduce conservatism, one can view the scalars ai and fli as free parameters

and optimize the worst-case 7-/2 performance bound 3" = tr PV with respect to a,

and _7_. The simplest case to consider is the case where Si is skew-symmetric or,

equivalently, Z_ = 0. In this case

0_J_.J= 2_i7_2t r PfiiSiO, + 2aiT-2tr sTsiQ = 0 (5.36)
Ooq

and

0__ffJ= 2cqT_2t r DA, iSiQ + 2_i7-2tr/5,4iA_PQ - 2/3/- atr ]iQ, = O,

where Q satisfies

(5.37)

+ 9. (5.38)
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Furthermore, in this case,

023" - 2,),-2tr o_i(_S w > 0, (5.39)
00/i 2

02fl = 2,_-:tr ATP(_PA, + 6f_[4tr £(_ > 0, (5.40)
Ofii

and

0c_3 0_i 2 \Oc_iO#i] = 16_'-2#_-4tr ]/0tr Si0o 5T >__0, (5.41)

which imply that (5.36) and (5.37) provide necessary conditions for a local minimum.

In the case Zi ¢ 0 we need to consider the cases c_i = 0 and c_i ¢ 0 since 3" is not

differentiable at _i = 0. First, let _i -- 0. In this case

0__ff_J= 2_i7_2t r/5/]i_iT/5_ ) _ 2_i_atr/_iQ = 0, (5.42)

where Q satisfies (5.38) with ai = 0. Next, consider the case where ai _¢ 0. In this

case

0__JJ = 2_i,),_2t r pf_iOoiQ + 2ai_,_2tr _T_i Q + 7-1_i--,sgn aitr 2iQ =0
Oc_i

(5.43)

and

cg__JJ= 23i7_2t r p2.,_i_ + 2_i7_2t r/5 5,i/]T/5_ _ 7_l_i__lc_iltr ZiQ - 2_ -atr ]iQ = 0

(5.44)

zx _ By using (5.36) and (5.37) (or (5.43) andwhere Q satisfies (5.38) and sgn ai = _.

(5.44) for non-skew-symmetric S_) within a numerical optimization algorithm, the

optimal robust reduced-order con!ro!!ers and scaling parameters ai,/_i, i = 1,..., r,

can be determined simultaneously.

5.6. Two-Mass Example

Consider the dynamic system shown in Figure 5.1, which represents a flexible

structure with uncertain high-frequency dynamics [40]. The equations of motion for
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this system are

ml:_l+ ClXl- c2(x2- Xl) + klXl - k2(x2- Xl) -_ u,

m:_: + ¢_(_ - _,) + k_(z_- _,) = O.

[_. xl k: l [.... x_

ml=l m2=lO

_ u c2=0. O1 _y_o_o1=_ 2

Figure 5.1" Two-mass system

We first consider the case of a colocated sensor and actuator pair, where the output

is given by Ycol = _1. Letting ml = 1, m2 = 10, kl = k2 = 1, and cl = c2 = 0.01 and

transforming to real normal coordinates yields the plant state space realization

-0.0002

-0.2208

0

0

Ycol = [-0.0545

0.2208 0 0

-0.0002 0 0

0 -0.0103 1.4320

0 -1.4320 -0.0103

0.0819 -0.0352 0.8181 ] X.

x+

-0.1439

0.2168

-0.0426

1.1890

U,

As in [40], the matrices D1, D2, El, and E2 are chosen to be

[00110 [1oo0] []0, D2= [0 1], El= DI=Dl= 0 0 0 0 0 0 ' 1 '

0 0

so that the LQG compensator places a notch at the second modal frequency. Uncer-

tainty in the damped natural frequency of the second mode Wd2 = 1.432 is modeled
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by choosing
0 0 0 0

0 0 0 0

AI= 0 0 0 1

00-10

The quasi-Newton optimization algorithm discussed in Section 2.3 was used to

compute full-order controllers (no - n) that minimize the cost bound ,.7 for several

values of 7. The actual 7/2 cost was computed for a range of values of the damped

natural frequency of the second mode for the LQG controller and for the implicit

small gain (with S_ = A1 and a_ and/31 obtained by (5.36) and (5.37)) and scaled

Popov controllers [106] corresponding to "), = 15, 7, and 2. The cost dependence is

shown in Figure 5.2. As 7 decreases, the 742 cost of the nominal closed-loop system

increases while the 7-/2 cost of the perturbed closed-loop system remains near the

nominal value for a larger range of perturbations. The LQG controller stabilizes the

closed-loop system for only small perturbations in the damped natural frequency of

the second mode, while the implicit small gain controllers stabilize the closed-loop sys-

tem and provide performance close to the optimal level even for large perturbations.

Hence, robust performance over a large range of the uncertain parameter is achieved

for only a small increase in the 7/2 cost above the optimal. Also note that the robust-

ness/performance tradeoffs of the implicit small gain controllers are comparable to

those of the scaled Popov controllers which are obtained using frequency-dependent

multipliers [106].

The frequency responses of the LQG controller and the implicit small gain con-

trollers with "y = 15, 7, and 2 are shown in Figure 5.3. The LQG controller is unstable

and achieves closed-loop stability and nominal performance by placing a notch at the

nominal damped natural frequency Wd2 of the uncertain second mode. Hence, closed-

loop performance degrades considerably with the damped natural frequency of the

second mode is perturbed. The implicit small gain controller with 7 = 7 has only
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_l/¥ = 2
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LQG

y=7
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i

L

1 1.5 2

Second Mode Damped Natural Frequency (tad/see)

Figure 5.2: Dependence of the 7/2 cost on the damped natural frequency of the

second mode: Colocated case

a shallow notch near the damped natural frequency of the second mode, while the

controller with 9' = 2 has no notch near that frequency. Hence, these controllers sacri-

rice nominal performance for improved robust performance over a larger range of the

uncertain damped natural frequency. As 9' decreases, the controllersguarantee robust

performance over a larger range of 5. Note that the controller obtained with 9' = 2

is positive real. Since the plant is a model of a flexible structure with a colocated

sensor and actuator pair, it is also positive real, and thus the closed-loop system is

asymptotically stable for all values of the uncertain damped natural frequency.

Next we consider the two-mass system of Figure 5.1 with a noncolocated sensor

and actuator pair by choosing

Ynonco_ = [--0.1063 0.1597 0.0018 --0.0419 IX. : :_

As in [40], we increase the matrix E1 by a factor of ten to enhance the notching

characteristics of the LQG controller.

g

V
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Figure 5.3: Frequency responses of implicit small gain controllers: Colocated case

V

The implicit small gain synthesis technique was used as before to compute full-

order controllers (nc = n) that minimize J for a range of % The actual 7-/2 cost was

computed for a range of the damped natural frequency for the LQG controller and

for the implicit small gain and scaled Popov controllers [106] corresponding to -y = 15

and 4. The cost dependence is shown in Figure 5.4. In the noncolocated case, the

LQG controller stabilizes the closed-loop system for a smaller range of the uncertain

parameter than the unstable LQG controller for the colocated plant.

The frequency responses of the LQG controller and the implicit small gain con-

trollers with ")'-- 15 and '7 = 4 were computed and are shown in Figure 5.5. Since the

plant is not positive real, robust performance cannot be achieved simply by obtaining

positive real controllers, as in the colocated case. Instead, as seen in Figure 5.5, the

controllers widen the notch at the nominal frequency of the uncertain mode, and the

controller with 7 = 15 deepens the notch as well.
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5.7. Three-Mass Example

Consider the three-mass, two-spring system shown in Figure 5.6 with ml = m2 =

m3 - 1 and an uncertain spring stiffness k_ [52,106]. A control force acts on mass

3 while the position and velocity of mass 1 are measured resulting in a noncolocated

control problem. The nominal dynamics, with state variables defined in Figure 5.6,

are given by

V Figure 5.6: Three-mass system

A

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

-kl kl 0 0 0

kl -(kl+k2nom) k2nom 0 0

0 k2nom -k2nom 0 0

0

0

1

0 '

0

0

B

0

0

0

1

, D1 ---

0 0

0 0

0 0

1 0

0 0

0 0

c=[1 1 o o o o], D =[o 1],

and kl = k2nom -- 1. The actual spring stiffness of the second spring can be written

as k2 = k2nom + 6 SO that the actual dynamics are given by AA = A + 5A1, where

AI _--

0 0 0000

0 0 0000

0 0 0000

0 0 0000

0-1 1000

0 1-1000

Furthermore, let

[11oooo]  2[o]El= 0 0 0 0 0 0 ' 1 "
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Figure 5.8: Frequency response of the implicit small gain controller
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A full-order (no= n) implicit small gain (with S1 = AI and O_1 and f_l obtained by

(5.43) and (5.44)) compensator was designed with a value of 7 = 20. The actual 7-/2

cost was computed for the LQG controller and for the implicit small gain and scaled

Popov controllers corresponding to 7 = 20 for a range of the uncertain parameter (i.

The cost dependence is shown in Figure 5.7. Though a value of 7 = 20 corresponds to

a parameter uncertainty of (f = 0.05, it is seen that the implicit small gain controller

is robust over a much larger range. Finally, the frequency responses of the LQG

controller and the implicit small gain controller are shown in Figure 5.8.

5.8. Conclusion

This research extended the implicit small gain guaranteed cost bound [54] to con-

troller synthesis. Specifically, the implicit small gain guaranteed cost bound was used

to address the problem of robust stability and 7-/2 performance via fixed-order dy-

namic compensation. A quasi-Newton optimization algorithm was used to obtain

robust controllers for several illustrative examples. The design examples considered

demonstrated the effectiveness of the implicit small gain guaranteed cost bound. Fi-

nally, we note that the conservatism of the proposed implicit small gain guaranteed

cost bound is difficult to predict and will depend upon the actual value of/5 deter-

mined by solving (5.18).
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CHAPTER 6

V

Robust Resilient Dynamic

Controllers for Systems with

Parametric Uncertainty and

Controller Gain Variations

V

6.1. Introduction

It is well known that unavoidable discrepancies between mathematical models

and real-world systems can result in the degradation of control-system performance

including instability. Thus it is not surprising that a considerable amount of re-

search over the past two decades has concentrated on analysis and synthesis of feed-

back controllers that guarantee robustness with respect to system uncertainties in

the design model (see [27] and the numerous references therein). These robust con-

troller synthesis frameworks include the Youla parameterization of all stabilizing con-

trollers [110], 7"/2 and 7/_ (including desired weighting functions for loop shaping)

synthesis [5, 39,126], £:1 control design [25], #-synthesis for structured real and com-

plex uncertainty [126], and robust fixed-structure controller synthesis [16]. Almost all

of these techniques yield very high order controllers in relation to the original system

order. A notable exception is the fixed-structure controller design methodology [16]
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which directly accountsfor controller complexity constraints, including controller or-

der, within the control-systemdesignprocess. However,an implicit assumption in-

herent in all of the above mentioned design frameworks is that the resulting robust

controller will be implemented ezactly. But in most applications (and, in particular,

aerospace applications), reduction in size and cost of digital control hardware results

in limitations in available computer memory and wordlength capabilities of the digital

processor and the A/D and D/A converters. This further results in roundoff errors

in numerical computations leading to controller implementation imprecision. Hence,

any controller that is part of a feedback system must be insensitive to some amount

of error with respect to its gains.

Within the context of robust controller synthesis, the above issues were first

pointed out in the enlightening and very interesting paper entitled, "Robust, Fragile,

or Optimal?" [75]. Specifically, the authors in [75] very elegantly point out that the

powerful (weighted) 7-/2, (weighted) 7-/oo, £:1, and # controller design approaches, even

though quite robust with respect to system uncertainty, are surprisingly very sensi-

tive with respect to errors in the controller coefficients resulting in vanishingly small

stability margins. Of course, since the control system is part of the overall closed-loop

system, the authors of [75] show through a series of examples that most of the elegant

multivariable robust control frameworks discussed above destabilize the closed-loop

system for extremely small perturbations in the controller coefficients. Hence, even

though these controllers are robust (with respect to plant uncertainty) and in some

cases optimal, they are extremely fragile! This further implies that the resulting con-

trollers preclude the control-system designer from tuning the controller gains around

a designed nominal controller which has been the creed of practicing control engi-

neers to capture performance requirements which are not directly addressed within

the original design problem. Finally, it is interesting to note that numerical experi-
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ments seem to indicate that the fragility or brittleness of the controller is exacerbated

with increasing controller order.

In this chapter, the robust fixed-structure guaranteed cost controller synthesis

framework of [10, 13, 52] for systems with structured parametric uncertainty is ex-

tended to address the design of non-fragile or robust resilient fixed-order (i.e., full-

and reduced-order) dynamic compensation. For flexibility in controller synthesis, we

adopt the approach of fixed-structure controller design which allows consideration

of arbitrary controller structure, including order, internal structure, and decentral-

ization. Specifically, using quadratic Lyapunov bounds, a rigorous development of

sufficient conditions for robust stability and worst-case 7/2 performance via fixed-

order dynamic compensation is presented for uncertain feedback systems wherein the

controller can tolerate multiplicative or additive gain variations with respect to its

nominal coefficients. These sufficient conditions are in the form of a coupled system

of algebraic Riccati equations that characterize robust resilient reduced-order con-

trollers. Hence, the proposed robust resilient controllers guarantee robust stability

and robust performance in the face of both system uncertainty and controller er-

rors. The proposed approach is applied on several numerical examples which clearly

demonstrate the need for robust resilient control.

6.2. Robust Stability and Performance

In this section we state the robust stability and performance problem. This prob-

lem involves a set bl C R n×n of uncertain plant perturbations AA of the nominal dy-

namics A and a set//c C R n¢_,_c×Rnc ×t x Rm×nc of uncertain controller perturbations

(AAc, ABc, ACe) of the nominal controller gain matrices (Ac, Be, C¢). The objective

of this problem is to determine a fixed-order, strictly proper dynamic compensator

(A¢, Be, Co) that stabilizes the plant for all variations in/4 x/4¢ and minimizes the
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worst-case7-/2norm of the closed-loopsystem. In this section and the following sec-

tion no explicit structure is assumedfor the elementsof H × Hc. In Section 6.4 and

Section 6.7, two specific structures of the variations in H × He will be introduced.

Robust Stability and Performance Problem. Given the nth-order stabiliz-

able and detectable uncertain system

it(t) = (A + AA)x(t) + Bu(t) + Dlw(t),

y(t) = Cx(t) + D2w(t),

t e [0,_),

determine an nth-order robust resilient dynamic compensator (Ac, Be, Co) such that

the closed-loop system consisting of (6.1), (6.2), and controller dynamics

:i:c(t)= (Ac+ AA¢)x¢(t)+ (B¢+ AB¢)y(t),

u(t) = (Co+/',Cc)x_(t),

(6.3)

(6.4)

is asymptotically stable for all allowable plant uncertainties and controller gain vari-

ations (AA, AA¢, ABc, ACe) C U × He and the performance criterion

J(A¢,Bc, C¢) _=

is minimized.

sup
(AA,AAc,ABc,ACc)EUxl_c

1 t

limsup-:E f [xW(s)nlx(s) + uW(s)n2u(s)]ds,
t--}oc r J o

(6.5)

For each uncertain plant and controller variation (AA, AA¢, ABe, ACc) E H x He,

the closed-loop system (6.1)-(6.4) can be written as

_(t) = (2 + a._):_(t)+ (b +/',b)w(t), t e [o,_o), (6.6)

where

A.A A [ AA
= [. ABcC AAc = AB¢D_ '
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E =

and where the closed-loop disturbance (D + AD)w(t) has nonnegative definite inten-

sity

f& =I'(b+_b)(b+Ab)X = [ V,o

6,3,

o ]BcV2B w + ABcV2B T + BcV2AB w + ABcV2AB T •

Sufficient Conditions for Robust Stability and

Performance

V

V

L_

V

v

In practice, steady-state performance is only of interest when the undisturbed

closed-loop system is robustly stable over h¢ x hCc. The following result is immediate.

For convenience, define

_a_ (k+Ak)T(k+_k)=[R0 _

where

0

C[R_Cc+ AC[R_C¢+ C[R_ACc+ AC[R_AC, '

_,_"g [o E_AC¢].

Lemma 6.1. Let (A¢, Be, Cc) be given and assume that ii.+ AA is asymptotically

stable for all plant and controller gain variations (AA, AAc, ABe, ACe) E b/x/We.

Then

J(Ac, B¢,Cc) = sup trQz_Ra, (6.7)
(AA,AAc,ABc,ACc)EL/xUc

where t_a E N _, is the unique nonnegative definite solution to

0 = (4 + A_i)Q_+ Q_(/i + A_i)• + ?A. (6.8)

The key step in guaranteeing robust stability and performance is to bound the

uncertain terms/_a in the cost function (6.7) and Afi,(_a + (_AA w and Vt, in the

Lyapunov equation (6.8) by smooth bounding functions fli('), i = 1,2, 3. For the

statement of the next result, define the notation

A/_ zx /_A_/_= [0 0 ]= o AC[R_Cc+ C[R_ACc+ AC[R_AC_ '
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[0 0 ]A9 _ 9_- 9= 0 ABcV2B_ + BcV2AB_ + AB_V2AB_ "

Theorem 6.1. Let Ac¢ R ncxnc, Be ¢ ]Rncxl, and Cc ¢ R mxn_ be given and let

f_l : _ x ]Rnc xnc x ]Rn_ xt x B{mxn_ --+ S _, ft2 • ]Rnc xl _+ S_, and _3 : Rmxn_ --+ S _, be

such that, for (AA, AAc, ABc, AOc) ¢ H x Hc, and O • N_,

Afi_Q +QAfi, w _< _I(Q, Ac, Bc, C¢), (6.9)

/,9 < _2(Bc), (6.10)

A}_ _< _3(C¢), (6.11)

and suppose there exists (2 • 1_ satisfying

0= ft.(2 +(2fit + Ftl((2, Ac, B_,C¢) + 9 + gtz(B¢). (6.12)

W

m

W

Then

(.4 + Afi,,b + AD) is stabilizable for all (AA, AA¢,AB¢,AC¢) • U x He, (6.13)

if and only if 5. + Aft. is asymptotically stable for all (AA, AA¢, ABe, ACe) • U x He.

In this case,

(2A <_ (2, (AA, AAc, ABc, ACc)• H x Hc, (6.14)

where (2A is given by (6.8), and

J(Ac, Bc, Cc) <_ J(Ac,B¢,C¢) _= tr(2 [/_ + _t3(Cc)J •

f 3

(6.15)

We stress that in (6.9), (2 denotes an arbitrary element of N a, whereasProof.

in (6.12), (2 denotes a specific solution of the modified Lyapunov equation (6.12).

This minor abuse of notation considerably simplifies the presentation. Now, for

(AA, AA¢, ABc, ACe) • H x Hc, (6.12) is equivalent to

0 = (_ + _)0 + 0(A + A_)_

+gt_((2, A¢,B¢,C¢)-(A.4(2+(2AAT)+ Vt, + _2(B¢) - A9. (6.16)
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Hence, by assumption, (6.16) has a solution Q E N a for all (AA, AA¢, ABe, ACe) E

/4 x/4c and, by (6.9) and (6.10), D1 (Q, A¢, Bc, Cc)-(AftQ2t-(_ iftT) and _2(Bc)-/ky

are nonnegative definite. Now, if the stabilizability condition (6.13) holds for all plant

uncertainties and controller gain variations (AA, AAc, ABe, ACe) E/4 x/4c, it follows

from Theorem 3.6 of [115] that

(2 + Aft, [Va + fti(O,,Ac, B¢,Cc)- (AftQ + (_Aft T) + fl2(Bc)- AV]½)

is stabilizable for all (AA, AA¢,ABc, ACe)EL/x/4¢. It now follows from (6.16) and

Lemma 12.2 of [115] that ft + Aft. is asymptotically stable for all plant uncertainties

and controller gain variations (AA, AA¢, ABe, ACe) E/4 x/4¢. Conversely, if ft + Aft

is asymptotically stable for all (AA, AA¢, ABe, ACe) E /4 ×/4¢, then (6.13) holds.

Next, subtracting (6.8) from (6.16) yields

.-x. ,
v 0 = (_i+ Aft)(0 - _)_)+ (0 - 0_)(ft + _ft)T

-]-_'_1 ((_, A¢,Be,C¢)- (Aft(_+ (_AftT)+ gt2(Bc)- A17,

or, equivalently, since ft + Aft is asymptotically stable for all (AA, AA¢, ABe, AC¢) E

/4 x U¢,

>_ O,

which implies (6.14). The performance bound (6.15) is now an immediate consequence

of (6.14) and (6.11) by noting that

J(A¢,B¢,C¢) = sup trQARA <_ sup trQRa = sup tr(_(/_+A/_) <_ trQ(/_+_3(C¢)).

[]
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Remark 6.1. In applying Theorem 6.1 it may be convenient to replace Condition

(6.13) with the stronger condition

is stabilizable for all (AA, AA¢, ABe, ACe) E/4 x/4¢, (6.17)

which is easier to verify in practice. Clearly, (6.17) is satisfied if [YA-nt-_l ((_, Ac, Bc, Cc)

-(A.4(_ + (_A.4 T) + _2(Bc)- AV] is positive definite for all plant uncertainties and

controller gain variations (AA, AA¢, ABe, ACe) E/4 x/4¢. This will be the case, for

example, if either V is positive definite or strict inequalities hold in (6.9) or (6.10).

6.4. Multiplicative Controller Uncertainty Struc-
ture and Guaranteed Cost Bound

J

I'

I

Having established the theoretical basis for our approach, we now assign an explicit

structure to the sets/4 and/4¢ and the bounding functions _I(Q, A¢, Be, C¢), f_2(B¢),

and f_3(C¢). Specifically, the uncertainty set/4 capturing parametric plant uncertainty

and the uncertainty set/4¢ capturing multiplicative (relative) controller gain variations

are defined by

g

w

/4 _ {AA: AA = BoFCo, FTF <_ 7-2I,.}, (6.18)

/4¢ _= {(AA¢,ABc, AC¢) : AA¢=hAc, ABe =5B¢, ACe =5C¢, 15[ <_ _'_-a},(6.19)

where B0 E R TM, Co E R r×n are fiXed: matrices denoting the structure of the plant

uncertainty, F c ]Rs×r is an uncertain matrix, 5 is an uncertain real parameter, and %

% are given positive numbers. With this uncertainty characterization, the closed-loop

system (6.6) has structured uncertainty of the form

A_ =/31FC1 + 5/32C2, (6.20)

m

W
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where

0 A¢
o =[Co 0] _2 _ o 0 B

= ' ' = I._ I._ 0 ' 0 C¢
(6.21)

For the structure of//and Lie as specified by (6.18) and (6.19), the bounding functions

_x(Q, Ac, B¢,Cc), _2(B¢), and _3(Cc) can now be given a concrete form. For the

statement of the next result, define/_:1 a ~W ~ yc 1 & ~ "W= E_I Ecl and = D_ De,, where

_7_1A[0 E2Cc] bc,_ [ 0 ]= ' = BeD2 "

Proposition 6.1. Let a, ac > 0. Furthermore, let/4 and L/c be defined by (6.18)

and (6.19), respectively, and define _t,(-), Ft2(.), and _3(') by

-1 -2 -T ~ ~
fh(d),Ac, B¢, C¢) = aBl[_ T +a¢/32B T + (_(_-17-2(_T(_1 + a¢ % C_ C2)Q, (6.22)

fl_(e¢) = (_[2+ 2_:1)_c1,

a_(c¢) = (_:2 + 2_:')_c,.

(6.23)

(6.24)

Then (6.9)-(6.11) are satisfied.

Proof. Note that

0<[o ol ][olo,o
11[ 

w.J
Which proves (6.9)Witl_/_an_':/_7"give_'b_y_(6.18)and (6:19), respectively'Next, note

that

[0 0 ][0 0 ]AV = 0 (62 +25)BcV2B w -< 0 ('7/_ +27_-l)BcV2B w = gt2(Bc),
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which proves (6.10)with L/c given by (6.19). Finally, a similar construction proves

(6.11). []

Next, using Theorem 6.1 and Proposition 6.1 we have the following immediate

result.

ing

Theorem 6.2. Let c_, C_c > 0, and suppose there exists a matrix Q 6 l_ satisfy-

-1 -2 -T -o = _. + (2__+ (2(_-'_-_,_,+ _¢ 3"cc_c_)o+ 9

+c_/3,b w + _¢/32/3f + (3': 2 + 23'_-1)I?¢, • (6.25)

Then (.4 + A/I, D + A/3) is stabilizable for all (AA, AAc, ABc, AC¢) e L/x bt¢ if and

only if .4 + A. 2, is asymptotically stable for all (AA, AA¢, ABe, ACe) C /4 x/g¢. In

this case,

_L<¢)

where QA satisfies (68), and

6.5.

(AA, AAc, AB¢,'AC¢) ¢ b/x U¢, (6.26)

J(A¢,B¢,Cc) <_ tr Q[/_ + (7_-2 + 23'_-1)/]_¢1J .

_ r 3

(6.27)

Decentralized Static Output Feedback Formu-

lation

In this section we use the fixed-structure control framework discussed in Chapter 2

to transform the Robust Stability and Performance Problem to a decentralized static

output feedback setting. Specifically, note that for every dynamic controller (6.3),

(6.4) with gain variations (AAc, ABc, ACe) E/ate given by (6.19), the uncertain closed-

loop system (6.1)-(6.4) can be written as

2¢(t) = (1 +5)BcC (1+5)A¢ Lx¢(t) + 1 +5)BED2
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Furthermore, by treating Ac, Be, and Cc as decentralized static output feedback

gains with multiplicative (relative) uncertainty as shown in Figure 6.1, we can pull

the uncertainty into the plant model obtaining

uj _ Y_

Figure 6.1: Decentralized static output feedback: Multiplicative controller uncer-

tainty

m_

3

_(t) = (A+ $,rS,)_(t) + (1+ _)_] u_,u,(t)+ _w(t),
i=l

yi(t) = Cy,:_(t) +:Du_,,w(t), i = 1,2,3,
3

z(t) = Cz_(t) + (1 + _) E 9_u, ui(t),
i----1

where ui(t), i = 1, 2, 3, are given by

t e [o,_), (6.29)

(6.30)

(6.31)

u_(t) = Acyl.(t), u_(t)= Bcy_(t), u3(t)= Ccya(t).

Finally, by rewriting the decentralized control signals in the compact form

(6.32)

ft(t) = lCfl(t), (6.33)
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where

u,(t) ]
_(t) =A . ,

u3(t)

and/C is given by
Ac 0

/c_ 0 Bc
0 0

the uncertain closed-loop system is given by

A
9(t) =

0

0

Cc

x(t) = (fi, + AA)2(t)+ (/)+ A/))w(t),

z(t)= (b +

(6.34)

(6.35)

(6.36)

(6.37)

where

Note that/32 = B_ and C2 = K_Cy.

We can now recast the Robust Stability and Performance Problem as the following

Auxiliary Optimization Problem.

Auxiliary Optimization Problem. For given a, ac > 0, determine the block-

diagonal controller matrix K: c ]R(2'_c+'0x(2n¢+t) that minimizes

tr Q [/_ + (,y2 + 2"y:')/_,] , (6.38)j(tQ

where Q E 1_ satisfies (6.25).

It follows from Theorem 6.2 that the satisfaction of (6.25) for Q E 1_ along with

the generic stabilizability condition (.A + A.4,/) + Am) leads to closed-loop robust

stability along with robust 7i2 performance.
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6.6. Sufficient Conditions for

ient Compensation with

certainty

Fixed-Order Resil-

Multiplicative Un-

In this section we state sufficient conditions for characterizing dynamic output

feedback controllers guaranteeing robust stability and robust 7i2 performance with

respect to system plant uncertainty and multiplicative controller gain variations.

Theorem 6.3. Let a, ac > 0. Suppose there exist matrices t_,/5 E l_ satisfying

+_,_T+_c_:+ (_:_+2_: ') 9c,, (6.39)

[ o0 = tft+_

and let (Ac, B¢, C¢) satisfy

T ~ ~ T -1 -2 ~p ~ T0 = B,,, PQC_I + a¢ % A_CyQ QC_,,

T ~ ~ T T- ~ T -1 -2 T
0 = B,,2PDD_,_2 + B,,2PQCy 2 + a¢ % BcCuQPQC_2

+ (._:2+ 2.y:') T -13¢,2P B_,ICDy,,, D_,2,

0 T ~ ~ T T -~ T -1 -2 -~- T= Bu3PQCy a + :Dz,,aEQCy3 + ac re C¢C_QPQC_

(6.41)

(6.42)

(6.43)

Then (ft + Aft, b + AD) is stabilizable for all (AA, AA_, ABe, ACe) E/4 ×/4c if and

only if ft. + Aft. is asymptotically stable for all (AA, AAc, ABc, ACe) E /4 ×/4¢. In

this case, the worst-case 7-/2 performance of the closed-loop system (6.7) satisfies the

bound

J(A¢,Bc,Cc) <_ tr Q [/_ + ('_-_ + 2% 1)/_c,] • (6.44)
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Proof. First we obtain necessary conditions for the Auxiliary Optimization Prob-

lem and then show, by construction, that these conditions serve as sufficient conditions

for closed-loop stability and robust 7-/2 performance. Thus, to optimize (6.38) subject

to (6.25), form the Lagrangian

L:(K:, ]5, A) _ tr {A [(_]_ + (7_-2 + 27:1) (_/_1]

where the Lagrange multipliers A >_ 0 and/5 C ]l _×_ are not both zero. By viewing

/C and (_ as independent variables, we obtain

OQ

(IfA+Q _-'7-2d_dl + _c 7¢ CJC2 is Hurwitz, then A = 0 implies/5 0. Hence,

it can be assumed without loss of generality that A = 1. Furthermore, note that/5 is

nonnegative definite. Thus the stationary conditions with A = 1 are given by

- _ -1 -2 ~T - T

OQ
-1 -2 -T ~

0_ W-- T -1 -2 A -]5- W

OA¢ = B,,_ PQC_I + a_ 7c _CyQ QCy_ = o,

C_ T ~ ~ T T ~ ~ T -1 -2 ~ ~- T

OBc = B"_PD:DY'_2 + B"_PQCY2 + 4¢ 7c BcC_QPQC_2

+ (7:2+ 27:') _ - v _B,,2PB_,ICDy_ _,,2 = 0,

0_ T ~ ~ W T ~ ~ W -I -2 C ~P ~ W

0C¢ - B_'3PQC_ + 7)_EQC_ + o_¢ 7¢ C¢ _Q QC_

+ (7:_+ 27:') _ - _:D_JD _,,KC_ QCy = O,

which are equivalent to (6.40)-(6.43). Equation (6.39) is a restatement of (6.25). It

now follows from Theorem 6.2 that the stabilizability condition (2. + A/I, D + A/))

I

I

I

I

I

I

U
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for all (AA, AA¢, ABe, ACe) E /4 x/4¢ is equivalent to the asymptotic stability of

+ AA for all (AA, AA¢, ABe, ACe) c/4 x/4¢. Finally, the _2 performance bound

(6.44) is a restatement of (6.38). []

Equations (6.39)-(6.43) provide constructive sufficient conditions that yield dy-

namic controllers for robust resilient fixed-order (i.e., full- and reduced-order) output

feedback compensation. In the design equations (6.40)-(6.42), one can view a and

c_¢ as free parameters and optimize the performance criterion (6.38) with respect to

and a¢. In particular, setting _ = 0 and _ = 0 yields
0ac

1 1

1 [tr/5(_C_G'IQ _ 1 [tr/5(_6'_C'2_)" _

'=- L (6.46)

It is important to note that c_ and c_c given by (6.46) are implicit since (_ and/5 are

functions of a and a¢. However, the optimal robust reduced-order controller gains

and the scaling parameters a and a¢ can be determined simultaneously within a

numerical optimization algorithm using 03" __ 0 and o_j_ = 0. For details of this fact,
Oa Oa¢

see Section 6.10.

6.7. Additive Controller Uncertainty and Guaran-

teed Cost Bound

In this section we assign a different structure to the uncertainty set/4c and conse-

quently the bounding functions f_i('), i = 1, 2, 3. Specifically, the uncertainty set/4¢

is assumed to be of the form

/4¢ _ {(AAc, AB¢,AC¢) " AAc = SZAc, AB¢ = 5:T-.sc, ACc = SZc¢, I,_1_ _:'}, (6.47)

where ZA¢,/:Be, and Zcc are ones matrices of dimension Rn¢ ×no, Rn¢ xl, and R 'nxn° , re-

spectively, 5 is an uncertain real parameter, and % is a given positive number. Note

that, unlike the multiplicative uncertainty characterization addressed in Section 6.4,
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the uncertainty characterization given by (6.47) can capture controller gain varia-

tions with zeroentries in the nominal gain matrices (Ac,Be, Co). With this additive

(absolute) uncertainty characterization, the closed-loop system (6.6) has structured

uncertainty of the form

/x_ = BoFCo, (6.48)

where

o0] [ oo]] ,040 = I.c Isc ' = 0 5r_ o ' = o •
o o 5Im zcc

For the structure of/d x Uc as specified by (6.18) and (6.47), the bounding functions

f_l(O), f_2(Uc), and _3(Cc) can now be given a concrete form. For the statement of

the next result, define/_c2 =z__T/_c2 and Vc2 =z_Dc2-T-De2 , where

_c:_[o E2zcc] bc:_[ o ]= , = IBcD 2 •

Furthermore, to enforce the block-structure of the uncertainty matrix F, define the

set of compatible scaling matrices :D by

_) =A {J_)0 > 0" -PDo "= /_0 _, _,T_ _ /_},

g

O

U

g

where

/_. _ [ 7_/r 0 ]7c I(,c+l+,n)

The condition FDo = DoF in _ is analogous to the commuting assumption

between the D-scales and A blocks in #-analysis and synthesis which accounts for the

structure in the uncertainty F. It is easy to see that there always exists such a matrix

D0 even if F is neither diagonal nor symmetric. For example, if F = fir, where f is a

scalar uncertainty, then Do can be an arbitrary positive definite matrix. Alternatively,

if F e R r×r is nondiagonal, then one can always choose Do = block-diag [d/r, Do],
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where d is a scalar and Do E R (nc+l+'0xCnc+t+') is an arbitrary matrix. Of course, -P

and/)o may have more intricate structure, for example, they may be block-diagonal

with commuting blocks situated on the diagonal.

Proposition 6.2. Let al > 0, a2 > 0, and let/9o E 7:). Furthermore, let/4 and

b/c be defined by (6.18) and (6.47), respectively, and define _1('), _2('), and _s(') by

_1(0,) = (_c_o[:)of_DoCoQ+ Bobf/_T,

a2(Bc) = _-'7_-2Vc, + (oq + % )V_2,

_a(C¢) _, -2- -2 -= "Yc Re, +(a2+'Yc )R¢_.

(6.50)

(6.51)

(6.52)

Then (6.9)-(6.11) are satisfied.

Proof. Note that with D0 E 7:)

0_< o : od oe: opl
<_[3obo_bTo+ O_[bogbo_o(2 - (,_M2+ d2a),_),

which proves (6.9) with/4 and b/c given by (6.18) and (6.47), respectively. Next, note

that

- -W
AV = 6bcl[gT + 6Dc2Dc ' + 62Dc_ 0¢ 5-T.

2 ~ - T _ -27-_ b TNow, since _ Dc_D¢2 _< "rc _¢2 c_ and

[, , ][, ,o < o_bc2-,_;-_,,Xbc, ,_,_b¢,-,_;-_,,Xbc,

- -T -T _(b¢,b_+ - -+_< alDc2Dc2 + a_-lTc2bc, Dc, - De, De,),

it follows that

which proves (6.10) with Hc given by (6.47). Finally, a similar construction proves

(6.11). []
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Next, using Theorem 6.1 and Proposition 6.2 we have the following immediate

result.

Theorem 6.4. Let ax, c_2 > 0,/90 E D, and suppose there exists a matrix Q E N_

satisfying

o = ftQ+Q2T+Q_VoboRbo_oQ+[_obo2i_Vo+9+_T,7:_f4' +(_,+7[_)9c_. (6.53)

Then (ft + A,4, D + A/_)is stabilizable for all (AA, AAc, ABc, ACc) E U ×/go if and

only if .4 + Aft, is asymptotically stable for all (AA, AAc, ABc, ACc) E L/× Uc. In

this case,

Qt, <_ Q, (AA, AAc, ABc, ACc) E L/x b/c, (6.54)

where Qa satisfies (6.8), and

rS[ -' -2" +(_+T:_)&_l . (6.55)J(Ac,Bc,Cc)< tr,_LR +_2 7c P_, .I

6.8, Decentralized Static Output Feedback Formu-

lation

As in Section 6.5, note that for every dynamic controller (6.3), (6.4) with gain

variations (AA¢, ABe, ACe) E L/c given by (6.47), the closed-loop system (6.1)-(6.4)

can be written as

_c(t)j = BcC+6ZBoC Ac+6Za¢ jLxc(t)j + BcD2+6ZBoD2

Furthermore, by treating Ac, Be, and Cc as decentralized static output feedback gains

with additive uncertainty as shown in Figure 6.2, we can pull the uncertainty into

the plant model obtaining

3

x(t) = (A + AA)2(t) + EB_'u'(t) + (13o + aB_)w(t), t e [0, oo), (6.57)
i=l
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Figure 6.2: Decentralized static output feedback: Additive controller uncertainty

yi(t) = C_,2(t) + Vy_,w(t), i= 1,2,3,
3

z(t) = (C. + A C_)_:(t) + E :D_'_ui(t)'
i=l

where ui(t), i = 1, 2, 3, are given by (6.32) and

(6.58)

(6.59)

[ or o o ]= 5:£mC 5IA¢ .' = 5:T_¢D2 '
Ac_8 [o _z_ ]

The uncertain closed-loop system is now given by

z(t)= (_ +_) _(t),

t e [0,_), (6.60)

(6.61)

where AA zx AA, AD _ ABw, and AE a_ ACz.

Now, as in the multiplicative controller uncertainty ease, we introduce an Auxiliary

Optimization Problem by considering

if(K:) = tr h + 2 % , + (c_2 + "y_-2)/_c2 , (6.62)

103



with Q c N a satisfying (6.53), and proceed by determining controller gains that

minimize J(K_).

V

6.9. Sufficient Conditions for Fixed-Order Resil-

ient Compensation with Additive Uncertainty
W

In this section we state sufficient conditions for characterizing dynamic output

feedback controllers guaranteeing robust stability and robust 7t2 performance with

respect to system plant uncertainty and additive controller gain variations.

w

Theorem 6.5. Let aa, a2 > 0, and let/)0 E D. Suppose there exist matrices (_,

/5 c N a satisfying

0 = M2+O. T+O [bo b£od2+[3obo2b[+9+, -;'7:29c, (6.63)

= ...... T (_'_ -t'-

+/_ + a-'2 7¢-2/_ + (a2 + 7_-2)k¢_, , (6.64)

U

and let (Ac, Bc, Cc) satisfy

~- T (6.65)0 = Bu_ PQCul,

-l-2 T ~ T (6.66)~ ~ T _,'jT/5("_')£T _._ OL1 7c B_,2PB=KDuwDuw2,0 = BuTpDT:)y,.2 + -,,_ "_-u2

~ " T T _ _ T -1 -2 T ~ T
0 = B,,TPQCu3 + Dz.3EQC_ + a 2 % :Dz.3Dz,,ICCyQCu 3. (6.67)

Then (A + AA,/) + A/)) is stabilizable for all (AA, AAc, ABe, ACe) E/4 x H¢ if and

only if .4 + AA is asymptotically stable for all (AA, AA¢,AB¢,AC¢) e 11 × 14_. In

this case, the worst-case 7/2 performance of the closed-loop system (6.7) satisfies the

bound :: : :..... ::: :::

-1 -2 ~ ]J(A¢,B¢,C¢)<_trQ /_+a 2 7¢ Rcl+(a2+TU2)/_¢2 . (6.68)

Proof. The proof is similar to the proof of Theorem 6.1. []
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As in Section 6.6, one can view a_, i -- 1, 2, and D0 as free parameters and optimize

the performance criterion ,](K:) given by (6.62) with respect to c_i, i = 1, 2, and D0.

In particular, setting _ = 0, i -- 1, 2, and o_]_ __ 0 yields, respectively,
Oai ODo

1 [tr/51_'¢1OQ ------ -~
% _r PVc_

1 1

1 [tr(ORCl] _, 0_2 _ _

7¢ [tr 0/5_2
(6.69)

o= 2boCoQPO $- b;'b[P ob; =. (6.70)

6.10. Quasi-Newton Optimization Algorithm

As mentioned in Section 2.3, the optimization algorithm was initialized with an

LQG controller for full-order controller designs, while for reduced-order control, the

algorithm was initialized with a balanced truncated LQG controller. A large value

was chosen for ? and then a feasible value of % was calculated. The quasi-Newton

optimization algorithm was used to find the controller gains A¢, Be, and C¢. After each

iteration, % was decreased and the current values of the controller gains (Ac, Be, C¢)

were then used as the starting point for the next iteration. When % could not be

decreased any further, 7 was decreased and a feasible % was calculated for the new

value of ? and the process was repeated.

6.11. Second-Order Unstable System

To demonstrate the design of robust resilient controllers, consider the second-order

unstable system originally presented in [29] to illustrate the lack of guaranteed gain

margins for LQG controllers. Specifically, the state space system is given by

:i:(t) = 0 1 1

y(t) = [ 1 0 ]x(t).
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The matrices D1, D2, El, and E2 are chosen to be

0 0
Here we consider uncertainty in the (2, 1) component of the dynamics matrix. Using

the uncertainty structure given by (6.18), the actual dynamics are given by A+BofCo,

whereB0=[1 0] wandC0=[0 1].

The quasi-Newton optimization algorithm discussed in Section 6.10 was used to

compute full-order controllers (nc - 2) that minimize the cost bound J for several

values of 7 and % for both the multiplicative and additive uncertainty characteriza-

tions. The actual 7"/2 cost was computed for a range of values of the controller error

parameter 5 and the plant uncertainty f. The cost dependence for the multiplicative

(relative) uncertainty characterization (6.19) is shown in Figure 6.4. As % decreases,

the 7-/2 cost of the nominal closed-loop system increases while the 7-/2 cost of the

perturbed closed-loop system remains near the nominal value for a larger range of

perturbations. The LQG controller stabilizes the closed-loop system for only small

perturbations in the controller error parameter, while the resilient controllers stabilize

the closed-loop system and provide performance close to the optimal level for much

larger perturbations in the controller error parameter. Hence, robust performance

over a large range of the uncertain parameter is achieved for some increase in the 7-/2

cost above the optimal.

The effects of both plant uncertainty and controller uncertainty can be seen in

the parameter plot shown in Figure 6.5. In this case, the stability of the closed-loop

system was checked over a grid of the uncertain parameters for both the LQG and a

robust resilient controller. The dashed line shows the region of asymptotic stability of

the LQG controller, the solid line corresponds to the robust resilient controller, and

'x' marks the point corresponding to the nominal conditions. It is evident from the
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figure that the robust resilient controller renders the closed-loop system more robust

to perturbations in both the plant and controller.

Next, Figure 6.6 shows the Nyquist plots of the loop gain of the system for the

LQG controller and three different robust resilient controller designs. These plots

clearly demonstrate the resiliency of the non-fragile controllers over the LQG con-

troller in terms of their increased gain and phase margins. Figures 6.7-6.9 give the

same plots for the case of additive (absolute) controller uncertainty. Once again, the

achieved robustness of the robust resilient controllers over the LQG controller is ob-

vious. Figure 6.7 also shows the cost dependence of an 7/_ robust controller which

shows that although the 7-/o_ controller is robust against plant variations, it is highly

fragile with respect to controller gain variations. The Nyquist plots of the loop gain of

the 7-/_ robust controller and the robust resilient controller corresponding to identi-

cal plant uncertainty levels are shown in Figure 6.10, which clearly shows the relative

stability superiority of the robust resilient controller over the robust 7-/_ controller.

6.12. Two-Mass Benchmark Problem

Consider the two-mass system shown in Figure 6.3 with ml = m2 = 1 and an

ml

k
w

m 2

Figure 6.3: Two mass oscillator

uncertain spring stiffness k [114]. A control force acts on mass 1 and the position of

mass 2 is measured, resulting in a noncolocated control problem. The nominal system
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dynamicswith knom -- 1 and states defined in the figure are given by

0 0 1 0 0 0 0

:_(t) = 0 0 01 x(t) + 0 u(t) + 00 w(t),
-1 1 O0 1 O0

1 -100 0 10

y(t) = 0 1 0 0]x(t)+[0 1 ]w(t).

Using the uncertainty structure given by (6.18), the actual dynamics are given by

A+BofCo, whereBo= [0 0 -1 1 ]w and C0= [ 1 -1 0 0]. The matrices

E1 and E2 are chosen to be

[0100] 0 ]E,= oooo'

As in Section 6.11, the quasi-Newton optimization algorithm was used to com-

pute full-order controllers (no = 4) that minimize the cost bound J. The cost depen-

dence for the multiplicative uncertainty characterization is shown in Figure 6.11. The

Nyquist plots of the LQG controller and three robust resilient controllers are shown

in Figure 6.12. For the additive uncertainty characterization, the cost dependence is

compared to the LQG controller and an 7t= robust controller in Figure 6.13. The

asymptotic stability regions of the LQG controller and the robust resilient controller

are shown in Figure 6.14. Finally, the Nyquist plots of the LQG controller and three

robust resilient controllers are shown in Figure 6.15, while the Nyquist plots of the

7t= robust controller and the robust resilient controller corresponding to identical

plant uncertainty levels are shown in Figure 6.16. In all cases, the robust resilient

controllers are superior in their ability to tolerate plant and controller uncertainty as

compared to the LQG and robust _o_ controllers. Furthermore, the robust resilient

controllers possess far superior gain and phase margins.

V
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6.13. Conclusion

In this chapter, we extended the robust fixed-structure guaranteed cost controller

synthesis framework to synthesize robust resilient controllers for controller gain vari-

ations and system parametric uncertainty. Specifically, the guaranteed cost approach

of [10] and [13] was used to develop sufficient conditions for robust stability and 7-/2

performance via fixed-order dynamic compensation. A quasi-Newton optimization

algorithm was used to obtain robust controllers for two illustrative examples.

X 10 4

I

\

\

" "- ,_ Resilient Controller

LQG _ _ y = 10OO0

0 I Yc= 89
-0.5 0 04.5

Resilient Controller

7=100

Yc=50

Controller Error Parameter,

Figure 6.4: Dependence of the 7-/2 cost on the controller error parameter
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CHAPTER 7

Fixed-Structure Controller Design

for Axial Flow Compression

Systems

7.1. Introduction

The desire to develop an integrated control system-design methodology for ad-

vanced propulsion systems has led to significant activity in modeling and control of

flow compression systems in recent years (see, for example, [7, 79, 83, 90, 98] and the

references therein). Two of the main design constraints limiting jet engine compres-

sion system performance are the compressor aerodynamic instabilities of rotating stall

and surge. Rotating stall is an inherently three-dimensional 1 fluid dynamic instability

which is characterized by regions of flow that rotate at a fraction of the compressor

rotor speed while surge is a one-dimensional axisymmetric global compression system

oscillation which involves axial flow oscillations, and in some cases even axial flow

reversal, which can damage engine components and cause flameout to occur.

A fundamental development in compression system modeling for low speed axial

compressors is the Moore-Greitzer model given in [90]. Specifically, utilizing a one-

1When analyzing high hub-to-tip ratio compressors, rotating stall can be approximated as a
two-dimensional local compression system oscillation.
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mode expansion of the disturbance velocity potential in the compression system and

assuming a cubic characteristic for the compressor pressure-flow performance map,

the authors in [90] develop a low-order three-state nonlinear model involving the

mean flow in the compressor, the pressure rise, and the amplitude of the rotating

stall. Starting from infinitesimal perturbations in the flow field, the model captures

the development of rotating stall and surge. In particular, the model predicts the

experimentally verified pitchfork hard subcritical bifurcation at the onset of rotating

stall [89].

Using the Moore-Greitzer model, a bifurcation-based controller for rotating stall

and surge was developed by Liaw and Abed [84]. In particular, the Liaw and Abed

static nonlinear controller is given by

gP

g

7tarot(A) = 70 + kA2, (7.1)

where ')'throt(A) is the control throttle, A is the amplitude of the rotating stall, and %

and k are constants. The locally stabilizing bifurcation-based controller given by (7.1)

essentially changes the bifurcation structure of the controlled system at the onset of

rotating stall from a hard subcritical bifurcation to a soft supercritical bifurcation to

soften the transition into rotating stall. However, as noted by Eveker et al. [36], even

though the Liaw and Abed controller reduces the abrupt transition into rotating stall,

it is ineffective for surge. Modifying the static nonlinear controller given by (7.1) to

"Tthrot(A, _)) ---- _0 -t- klA 2 - k2_, (7.2)

where _ is the time rate of change of the mean flow in the compressor 2 and kl and

2Even though a patented differentiation scheme for sensing the time rate of change of the mean

flow in the compressor is given in [36], the calculation of _ can be simply obtained by the most

elementary equations of fluid dynamics. For example, under the assumption of one-dimensional
flow, the unsteady axial momentum equation as applied to the bulk of the fluid in the inlet duct

yields _ = - _T-_wAP, where p is the fluid density, L is the duct length, U is the rotor wheel speed,
vLU

and Ap is the change in static pressure.
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k2 are constants, Badmus et al. [8] considerably extended the domain of attraction

of the Liaw and Abed controller. A fundamental shortcoming of the aforementioned

controllers is the demanding two-dimensional sensing requirements for implementing

these controllers. Specifically, measuring rotating stall amplitude is quite challenging,

requiring pressure sensor arrays distributed circumferentially around the compressor

annulus, along with discrete Fourier transform software for spatial and temporal fil-

tering for computing the first circumferential spatial harmonic of rotating stall. As

an alternative to the locally stabilizing nonlinear controllers developed in [8, 36, 84],

the authors in [56, 78, 79] develop globally stabilizing controllers for controlling ro-

tating stall and surge in axial flow compression systems. In particular, Lyapunov-

based recursive backstepping globally stabilizing static full-state feedback nonlinear

controllers requiring rotating stall amplitude measurements are constructed in [56],

while a globally stabilizing static output feedback nonlinear controller is given in [79].

Specifically, the Krsti(_ et al. [79] static output feedback controller is given by

F -b CllI / - C2(I )

"_throt ((I), kI/) _- _ , (7.3)

where @ is the pressure rise in the CompressOr, (I) is the circumferencially averaged

flow in the compressor, a and F, cl, and c2 are constants. Even though (7.3) provides

a simplified sensing architecture over (7.1) and (7.2), the controller is static, pos-

sessing gain at all frequencies. Furthermore, none of the above controllers have any

disturbance rejection guarantees.

In this chapter we develop linear, time-invariant, pressure rise feedback reduced-

order dynamic compensators for the nonlinear Moore-Greitzer axial flow compressor

model. Specifically, we construct a modified Riccati equation whose solution guaran-

tees that the nonlinear closed-loop axial flow compression system is locally asymptot-

3Mean flow is relatively simple to measure and is usually measured using pitot probes located in
the bell mouth of an engine.
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ically stable and the closed-loop output system energy is less than the net weighted

input energy at any time T in the face of L2 exogenous disturbances. Using the

modified Riccati equation, constructive sufficient conditions for fixed-order (i.e., full-

and reduced-order) pressure rise feedback dynamic compensators guaranteeing local

asymptotic stability and disturbance rejection are developed. These sufficient con-

ditions are in the form of a coupled system of algebraic Riccati equations providing

explicit design equations for characterizing pressure rise feedback dynamic compen-

sators that account for compression system nonlinearities and exogenous disturbances

with a guaranteed domain of attraction. Unlike the nonlinear static and relative de-

gree zero controllers possessing gain at all frequencies discussed above, the proposed

linear dynamic compensators explicitly account for compressor performance versus

sensor accuracy, compressor performance versus processor throughput, and compres-

sor performance versus disturbance rejection. Furthermore, the proposed controller

is predicated on only pressure rise measurements, providing a considerable simplifi-

cation in the sensing architecture.

7.2. Output Feedback Disturbance Rejection Con-

trol for Axial Flow Compression Systems

In this section we introduce the output feedback disturbance rejection control

problem for axial flow compression systems. The goal of the problem is to deter-

mine a linear, time-invariant, fixed-order dynamic output feedback compensator that

stabilizes a given parameterization of the nonlinear Moore-Greitzer axial flow com-

pressor model using only pressure rise measurements while guaranteeing closed-loop

disturbance rejection and optimality of a quadratic performance criterion involving

weighted state and control variables.

To capture post-stall transients in axial flow compression systems, we use the
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one-mode Galerkin approximation model for the partial differential equation charac-

terizing the disturbance velocity potential at the compressor inlet proposed by Moore

and Greitzer [90]. Specifically, we consider the basic compression system shown in

Figure 7.1, consisting of an inlet duct, a compressor, an outlet duct, a plenum, and a

control throttle. We assume that the plenum dimensions are large compared to the

compressor-duct dimensions so that the fluid velocity and acceleration in the plenum

are negligible. In this case, the pressure in the plenum is spatially uniform. Further-

more, we assume that the flow is controlled by a throttle at the plenum exit. Finally,

we assume a low speed compression system with oscillation frequencies much lower

than the acoustic resonance frequencies so that the flow can be considered incom-

pressible. However, we do assume that the gas in the plenum is compressible, and

therefore acts as a gas spring.

ompres

Figure 7.1: Compressor system geometry

Now, invoking a momentum balance across the compression system, conservation

of mass in the plenum, and using a Galerkin projection based on a one-mode circum-

ferential spatial harmonic approximation for the non-axisymmetric flow disturbances

yields [90]

_fo 2_A(t) ---- _ qJc(O(t) +A(t)sin(0))sin(0)d0, t • [0, cx_), (7.4)

1 fo 2'__(t) = -_(t) + _ _c(_(t) + A(t)sin(O))dO, (7.5)
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1

_(t) = _[_(t) - _T(t)], (7.6)

where ff is the circumferentiaIly averaged axial mass flow in the compressor, • is

the total-to-static pressure rise, A is the normalized stall cell amplitude of angular

variation capturing a measure of nonuniformity in the flow, fiT is the mass flow

through the throttle, a and/? are positive constant parameters, and _c(') is a given

compressor pressure-flow map. The compliance coefficient /? is a function of the

compressor rotor speed and plenum size. For large values of/3, a surge limit cycle

can occur, while rotating stall can occur for any value of/?. Now, assuming that the

compressor pressure-flow map _c(') is analytic, the integral terms in (7.4) and (7.5)

can be expressed in terms of an infinite Taylor expansion about the circumferentially

, t C [0, oc), (7.7)

(7.8)

_(t) = _7[(I)(t) - (I)T(t)]. (7.9)

The specific compressor pressure-flow map, qJc('), which was considered in [90] is

13 (7.10)• c(O) = _Co + 1+ _(I) - _q ) ,

where _c0 is a constant parameter. In this case, (7.7)-(7.9) become

_l(t) = 2A(t)[1 - (I)2(t) - ¼A2(t)] +/?lWl(t), t E [0, oo), (7.11)

_)(t) = -_(t) + _c(q)(t)) - _¢b(t)A2(t) +/?2w2(t), (7.12)

1

_(t) = _[_(t) - q)T(t)] +/?3w3(t),..... (7.13)

to which we have added the 122 external disturbance signals wl(t), w2(t), and wa(t),

t E [0, ec), with scaling factors/71, /72, /?3 E IR. The proposed additive disturbance

averaged flow to give

cr _ i d2k_lqjc(_)[ (_)2k-1A(t) = _ k!(k - 1)! d_ 2k-' _=¢(t)

_ 1 d2kk_c(') =_,(t)(A_t))2k_)(t) = -_(t) + E (_.)2 d_2k -- '
k=0 " "
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model can be used to capture combustion noise and turbine speed fluctuations. For

example, wait), t E [0, oo), might reflect back-pressure disturbances to the compressor

from the combustor.

Next, note that for fixed values of flow through the throttle, _Pw(t) ---- OWeq, (7.11)-

(7.13) have an equilibrium point given by

(Aeq, (_eq, _I/eq) = (0, (I)Teq, _I/c ((I)eq) ). (7.14)

A A A
Defining the shifted state variables xl = A, x2 = • - _eq, and x3 = _ - _eq, so

that for a given equilibrium point on the axisymmetric branch of the compressor

characteristic pressure-flow map the system equilibrium is translated to the origin, it

follows that the translated nonlinear system is given by

21(t) = 2(1 - A_)xl(t) -- _t_arlx3tt_l,J+ xl(t)x_(t) + 2Axl(t)x2(t)]

+_lw,(t), t e [0,_), (7.15)

3 _ _Axl(t ) - _x_(t)x2(t)k2(t) = -x3(t) + _(1 A_)x2(t)_, 3 3 2 3 2_x2(t)-_Ax2(t)-

+_2w2(t), (7.16)

1

_:3(t) = _-_[x2(t) - u(t)] + fl3w3(t), (7.17)

A
where A =_ OT_, and u = OT -- .k. Decomposing (7.15)-(7.17) into a linear and a

nonlinear part, we obtain the state space model

= _(1- O i O_ ¢(yo(t))
_(t) o A_) - _(t) +
_(t) o -_ o z_(t) o

0 _1 0 0 wl(t)

+ 01 u(t)+ 0 _2 0 w2(t) , (7.18)
--_r 0 0 _3 w3(t)

where

[1001 [x3(t)
[ x_(t) + 4x,(t)x_(t) + 8Ax,(t)x2(t) ], ¢(yo(t))= [3)_x_(t) + 3x_(t)x2(t) + 6)_x](t) + 2x_(t) "
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Now, it can be shownthat the linear part of (7.18) is linearly stabilizable for )_ > 1,

while for A -- 1, corresponding to the maximum pressure rise equilibrium point,

the linear part of (7.18) is linearly unstabilizable. With the system written in this

form, we can now state the dynamic output feedback control problem for axial flow

compression systems. Here, for generality of exposition, we present the formulation

for an n-dimensional dynamical compression system.

Dynamic Output Feedback Control for Axial Flow Compression Sys-

tems. Given the nth-order stabilizable and detectable 4 nonlinear dynamical system

g

U

:_(t) = Ax(t) + Bo¢(yo(t)) + Bu(t) + Dlw(t),

yo(t) = Cox(t),

t c [0,_), (7.19)

(7.20)
g

with output measurements

y(t) = Cx(t) + D2w(t), (7.21)

where u(t) E R m, y(t) E R t, yo(t) E R t°, t E [0, c<)), ¢ : R l° -+ R TM, and where

w(t) E R d, t E [0, c_), is an exogenous £2 signal, each of whose components has norm

less than one, determine an nth-order linear, time-invariant dynamic compensator

:i:c(t)= A¢xc(t)+ B¢y(t),

_(t) = C_x_(t),

te [0,_), (7.22)

(7.23)

that satisfies the following design criteria:

1. the undisturbed (w(t) - 0) closed-loop nonlinear system (7.19)-(7.23) is asymp-

totically stable;

4Here, stabilizability and detectability are defined with respect to the linear part of the dynamical

system (7.19)-(7.21).
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2. the disturbed closed-loop system (7.19)-(7.23) from /:2 disturbances w(.) to

performance variables

z(t) = ElX(t) + E2u(t), (7.24)

satisfies the disturbance rejection constraint

/0zT(s)z(s) ds < 7_ wW(s)w(s)ds + V(2(0)), T >_ 0, w(.) e/:2,

(7.25)

where z(t) C R p t C [0, oo) 7d > 0 is a given constant, 2(t) zx [xT(t) xTft_] T, _ = Ck /J '

and V(.) is a Lyapunov function for the closed-loop system (7.19)-(7.23); and

V

3. the quadratic performance functional

J(Ac, Bc, Cc) _= fo °°

with w(t) - 0 is minimized.

zT(t)z(t)dt, (7.26)

For the three-state parameterized Moore-Greitzer model given by (7.18), the sys-

tern matrices in (7.19) and (7.20) are given by

[ 0] [0 ol I 1_(1-A 2) 0 0 1 0 0

A= 0 _(1-A 2) - , B0= Z , Co= 0 1 0 '
1

0 _ 0 0

(7.27)

O0 _1
B= , DI= 0

-_ 0

Furthermore, for pressure rise sensor measurements,

00]0 .

0
(7.28)

C= [0 0 1 ]. (7.29)

v
7.3. Sufficient Conditions for Closed-Loop Stabil-

ity and Disturbance Rejection

In this section we provide a Riccati equation that guarantees asymptotic stability

of the undisturbed (w(t) - 0) closed-loop system (7.19)-(7.23) as well as disturbance
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rejectionof the disturbed closed-loopsystemin the faceof/:_ exogenousdisturbances.

First, however,note that the closed-loopsystem (7.19)-(7.23) has a state-spacerep-

resentationgiven by

_:(t)= 2:_(t)+ t}o¢(yo(t))+ b_(t),

yo(t) = Oo:_(t),

z(t) = _(t),

t • [o,_), (7.30)

(7.31)

(7.32)

where

= O_o×mo =[Co 0,oXnc].

Furthermore, we assume that the nonlinear part of (7.19), or, equivalently, (7.30), is

such that ¢(.) • Cv, where

_, _ {¢. _ --+Rmo:¢(0)= o, II¢(yo)ll__ _-_ Ilyoll_,yo• _}, (7.33)

where 7:) C_ ]Rto is a closed set and 7n > 0 is given. For the statement of the main

result of this section, define the notation h =_ n+nc, /_ =A /_T/_, and V =A L_)b T and

set 7:) = R t° .

Theorem 7.1. Let (Ac, Bc, C¢) be given and suppose there exists a matrix t5 •

and scalars e, 7d, % > 0 satisfying

(7.34)

Then the function

V(:_) = :_Tp:}, (7.35)

is a Lyapunov function that guarantees that the undisturbed (w(t) - 0) closed-loop

system (7.30)-(7.32) is globally asymptotically stable for all ¢(.) • (I)Rto. Further-

more, the solution :_(t), t • [0, _), of the nonlinear system (7.30)-(7.32) satisfies the
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disturbance rejection constraint

/0 /0zT(s)z(s)ds < -_ wT(s)w(s)ds+ V(eo), T _>0, w(.) e L_. (7.36)

Finally, in the case where wit) - O, the performance functional (7.26) satisfies the

bound

J(_o, Ac, Bc, Cc) = z(t)Wz(t)dt < v(i:0). (7.37)

Proof. First note that since /5 EIt _, it follows that the Lyapunov function

candidate V(3c), :_ E N _ \ {0}, given by (7.35), is positive definite. The corresponding

Lyapunov derivative along the trajectories _(t), t E [0, oo), of the undisturbed (w(t) =

0) closed-loop system (7.3o)-(7.32) is given by

V(5:(t)) __aV'(5:(t))[Ah:(t)+/}o¢(yo(t))]

= 2T(t)(),TP + P2,)2(t) + 2¢T(yo(t))[3[P_(t), t C [0, C_), (7.3S)

or, equivalently, using (7.34)

V(:_(t)) = --2T(t) [eP + "yd2PlPP + /_] 2(t) -- 7_2:_T(t)/5/_oB//52(t)

--4:T(t)hT_o2(t) +¢T(yo(t) )[_T[_2(t) + 2T(t)P[_o¢(yo(t) ), t E [0, c_). (7.39)

Now, adding and subtracting 7_¢W(yo(t))¢(yo(t)), t E [0, co), to and from (7.39) and

grouping terms yields

l/(:_(t)) = --2T(t)[eP + _,d2PVP +/_]5:(t) + 7_¢T(yo(t))¢(yo(t)) -- yW(t)yo(t)

-- [_/_lBToP2(t)--%¢(yo(t ) )]T[_l[3T[_5:(t)-%¢(yo(t) )], t E [0, c_). (7.40)

%¢ C-Y0 y0 _<Since e/5 is positive definite, "yd2/bV/5+R is nonnegative definite, and 2 T T

0, it follows that V(:_(t)) < 0, t • [0, cx_), and hence the undisturbed (w(t) =- O)

nonlinear closed-loop system (7.30)-(7.32) is globally asymptotically stable.
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Next, to show that the disturbance rejection constraint (7.36) holds, note that for

all w C Rd,

=722_TPgP_: + _:T_ + 7_wTw_ zTz _ 2_:TpDw. (7.41)

Now, let w(.) c /22 and let _(t), t c [0, oo), denote the solution of the nonlinear

closed-loop system (7.30)-(7.32). Then

_'(2(t)) = 2T(t)(.4TP + P_)2(t)- 2¢T(yo(t))BTpS:(t)+ 22T(t)Pbw(t),

which, using (7.34) and (7.41), implies

t e [o,_),

(7.42)
I

_'(2(t)) < 22T(t)PDw(t)--7j2]:T(t)Pf/P2(t)- :_T(t)/_5:(t)

<_ 7_wT(t)w(t) - zT(t)z(t), t C [0, C_). (7.43)

Now, integrating (7.43) over [0, T] yields

TV(Zc(T)) < [_/_wT(s)w(s) -- zT(s)z(s)]ds + V(2(0)), T > 0, w(') C 122, (7.44)

which, by noting that V(:_(T)) > O, T > O, yields (7.36).

Finally, to show that the performance functional (7.26) satisfies the bound (7.37),

note that (7.40) implies

l}'(:_(t)) < :_T(t)/_:_(t). (7.45)

Now, integrating (7.45) over [0, oo) yields

f0 f0zT(t)z(t)dt < "V(:_(t)) dt. (7.46)

U

W
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Next, since:_(t) -+ 0 as t -_ oc, where :_(t), t • [0, oc), satisfies (7.30) with w(t) - O,

we obtain

J(Sco, A¢,Bc,C¢) < V(:_(0))- lim V(Yc(t))
t--+oo

= v(_(0))

: _o_P_o. []

Theorem 7.1 guarantees global asymptotic stability if ¢(.) • (I)v with 7) = R l° .

However, for the three-state axial compressor model given by (7.18), ¢(-) • (I)v is not

satisfied for 7:) = lRl° . Hence, to obtain a local stability result for the parameterized

compressor model given by (7.18), we restrict 7) to the set 7)¢, where 7)¢ is the smallest

compact set given by

7)¢_ {yoe Rto:II¢(yo)ll__ _-_ Ilyoll_},

where ¢(y0), Y0 • Rl°, is the nonlinear part of (7.18).

(7.47)

Proposition 7.1. For the axial flow compression system given by (7.18), 7)c is

not empty.

Proof. Defining

it follows that

f(yo) _ 7;2y[Yo - CT(y0)O(Y0), (7.48)

f(Yo) = 7n2(X_ + x_) - x 12[x,2+ 4x2(2A + x2)] 2 - [3x2(A + x2) + 2x_(3A + x2)] 2. (7.49)

Now, since f'(0) = 0, where f'(0) denotes the Frech6t derivative of f(.) at the origin,

and

f,,(0)=[2%-2 0 ]0 27; 2 > O, (7.50)
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where f'(0) denotes the Hessian at the origin, it follows that the origin is a local

minimum of f(.). Thus, since f(-) is continuous, there exists a neighborhood of the

origin where f(yo) > O, yo c Rt° \{0}, and hence :De is not empty. []

The size and shape of the set :Dc for various values of the parameter 7, with

A = 1.1 are shown in Figure 7.2.

0.4 I

0.3

0.2

0.1

X_ 0

-0.1

-0.2

-0.3

-0.4
! I I

-o., -o'., o oi, o'.,
×1

Figure 7.2: Regions, 7)¢, satisfying the sector bound (7.47)

Next, note that J(bco, Ac, B¢,Cc) < _T/5_0 = tr/5_0J, which has the same form

as the standard 7"/2 cost appearing in standard LQG theory. Hence, we replace _0:_ w

by

ly zx [ IY, 0 ] (7.51)= 0 Bc_B T '

where _ C R n×" and V2 E R t×t are arbitrary design weights such that "_'1 _> 0 and

> 0, and proceed by determining controller gains that minimize tr/b_r. Before

proceeding, however, we shall require for technical reasons that V2 _ D2D T = o_2_,
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wherethe positive scalarc_ is a design variable such that (_ - 0 if and only if D2 --- 0.

Next, in the spirit of [11], j(/5, A¢, Be, Co) _ tr/hV can be interpreted as an auxiliary

cost which leads to the following optimization problem.

Optimization Problem. Determine controller gains (Ac, Be, C¢) that minimizes

,]([=),A¢,B¢,C¢) a__tr/5 _ with/5 E _ subject to (7.34) and such that (A¢,Bc, C¢) is

minimal.

It follows from Theorem 7.1 that by deriving necessary conditions for the Opti-

mization Problem, we obtain sufficient conditions for characterizing dynamic output

feedback controllers guaranteeing closed-loop system stability and disturbance rejec-

tion to L2 exogenous disturbances.

7.4. Reduced-Order Dynamic Control for Axial

Flow Compressors

In this section we present our main theorem characterizing fixed-order disturbance

rejection controllers for axial flow compression systems. For design flexibility, the

compensator order, n¢, may be less than the plant order, n. For convenience in

stating this result, define the notation S _= (I, + o_2'yd2Q/5) -1 for arbitrary matrices

Q, /5 c 1_, and A_ a= A + leIn. Note that since Q, /5 E N _ are nonnegative

definite and the eigenvalues of Q/5 coincide with the eigenvalues of the nonnegative

definite matrix Q1/2/hQ1/:, it follows that Q/5 has nonnegative eigenvalues. Thus the

eigenvalues of I, + _2_d2Q/5 are all greater than one, so that S exists. Furthermore,

define

DZ a {_ e R_: C0_ E :Dc and ;:_W/5:__<_ _}, (7.52)

where t5 E N a satisfies (7.34) for a given compensator (Ac, Be, C¢) and f_ > 0.

Theorem 7.2. Let nc _< n and let e, %, 7d, _ > 0. Furthermore, using the
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resultsof Lemma 5.2, supposethere exist matrices P, Q,/5, Q E N n satisfying

0 = ATp+PA_+P[7_2BoBTo+Td2V1]P+RI+CTCo-PEp+vTpEP7±, (7.53)

0 = (A_ + [-),_2BoBT + 7d2V1][P +/5])Q+Q(A_ + [7_-2B0 BT +Td2V1][P+/5])W

+ _ - SQ_QS T + r± SQ_QSTr T, (7.54)

0 = (A_-SQ_ + ['-/n2Bo BT +')'d-2V1]p)T/5+ [)(A_- SQ_+["/n2BoB T +"/d2V1]P)

+/5(7_2BoBT +Td2[VI+a2SQ_,QST])/5+PEP-TTpEPT±, (7.55)

0 = (A, + [7;2BOB / +7_2VI - E]P)(_+(_(A, + [Tn2BoBoT +7_2VI - E]P) T

+ SQ_Q S T- T± SQ_QS T TT, (7.56)

rank _) = rank/5 = rank Q/5 = n¢, (7.57)

and let (Ac, Be, Co) be given by

Ac = F[A - SQE + (%-_BoB w + 7d2V_ - _)P]G T, (7.58)

Be = FSQCT_ -1, (7.59)

Cc = - R21BT pG T. (7.60)

Then

/5= [ P+/5 --/SGT ] (7.61)-G/5 G/SG w '

satisfies (7.34) and (A¢, Be, C¢) is an extremal of ,7(/5, A_, Be, C¢). Furthermore, the

undisturbed (w(t) -:0)-closed-loop system (7.30):(7.32) is globally asymptotically

stable for all ¢(.) 6 _R,o. In addition, if ¢(.) E ¢_,_, then the undisturbed (w(t) - O)

closed-loop system (7.30)-(7.32) is locally asymptotically stable, and DA defined by

7:)A _ {_ 6 IRa: C0Y: 6 De and :_T/S:_ __ V/_}, (7.62)

where vz = max{fl > 0 : 7:)Z C IRa} is a subset of the domain of attraction of the

closed-loop system. Moreover, the solution _(t), t E [0, oo), of the disturbed closed-

loop system (7.30)-(7.32) satisfies the disturbance rejection constraint (7.36). Finally,
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the cost j(/5, Ac, Be, C¢) is given by

,](P,A¢,B¢,Cc) = tr[(P +/5)Vi + PSQ_QST]. (7.63)

Proof. The proof is constructive in nature. Specifically, we first obtain necessary

conditions for the Optimization Problem and then show by construction that these

conditions serve as sufficient conditions for closed-loop stability and disturbance re-

jection. For ¢(.) E (I)vc and w(t) - O, the estimate of the domain of attraction

Z)A is immediate using maximal closed sublevel sets. For details of a similar proof,

see [11, 58]. F-I

Since our design methodology yields reduced-order controllers, we are reducing

control system complexity by assuring the implementation of a simpler controller for

achieving disturbance rejection than the full-order controller. By "simple", we are

referring to a reduction in control system complexity measured by computer memory.

In the full-order case, n_ =n, set G- F = T = In, SO that T_L = 0. Now the last

term in each of (7.53)-(7.56) can be deleted and G and F in (7.58)-(7.60) can be

taken to be the identity. Furthermore, Q plays no role, so (7.56) is superfluous. If,

alternatively, the reduced-order constraint is retained and the disturbance rejection

constraint is sufficiently relaxed, i.e., _d --+ OC, then considerable simplification arises

in (7.53)-(7.56).

To solve the design equations (7.53)-(7.56), we employed the homotopic continu-

ation method presented in [58]. Homotopy algorithms operate by first replacing the

original problem with a simpler problem having a known solution. The desired solu-

tion is then reached by integrating along the homotopy path that connects the starting

problem to the original problem. The algorithm was initialized with % -- _d "- OO,

and the LQG gains designed for the linear part of (7.18). For given values of the

parameters % and '_d, the algorithm was used to find (A¢, Be, Ca). After each iter-
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ation, % and 7dwere decreasedand the current valuesof (Ac,Be, Co) were used to

find feasible values for % and 7d which were then used as the starting point for the

next iteration. Complete details of the algorithm are provided in [58].

7.5. Active Dynamic Control of an Axial Flow

Compressor

In this section we use the design equations (7.53)-(7.56) to design a full-order

(no=3) disturbance rejection, pressure rise feedback, dynamic controller for the non-

linear Moore-Greitzer axial flow compressor model given in Section 7.2. Specifically,

we chose the data parameter values of a = 3.6, fl = 0.356, and _Co -- 0.72, and set

A = 1.1 in the parameterization given by (7.18). Note that with A = 1.1, the lin-

ear part of (7.18) is linearly stabilizable, with (7.18) providing an equilibrium point

close to the desired (A = 1.0) maximum pressure rise compressor operating point.

Furthermore, we set % = 12.59 and 7d = 2.3, and chose design weights

VI=_=BB T, V2-='V'2=l, El=J10 1 1] E2--= [ 0]' 1 "

Using the initial conditions A0 -- 1.0, (I)0 = 1.866, and _0 = 3.22 to capture

system transients in the compressor, simulations of the Moore-Greitzer model were

run in both the open-loop (_throt(t) : _'0 = 0.6689) configuration and with the de-

signed controller given by (7.58)-(7.60) in the feedback loop. Figure 7.3 shows the

phase portrait of pressure rise versus flow in the compresssor for the case where no

external disturbances are included in the simulation. It is seen from this plot that the

controlled system converges to an equilibrium point close to the maximum pressure

rise equilibrium point, whereas the constant throttle opening drives the system to a

stalled equilibrium point. Figure 7.4 shows the phase portrait of pressure rise versus

flow for a set of initial conditions chosen with various radii at angular intervals of
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_/6 about the maximum pressure rise operating point. Figure 7.5 shows the phase
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W

portrait of pressure rise versus flow in the compressor when the exogenous £2 signal

given by

[ 0.9e-t/hsin(t+2) ]w(t) = 1.2e-t/'°sin(t/2 + 1) '

is included in the simulations. Once again, the closed-loop system converges to a

point near the maximum pressure rise equilibrium point while the constant throttle

opening drives the system to a stalled equilibrium point.

Figures 7.6-7.9 show the time histories of the stall cell amplitude A(t), the com-

pressor flow (I)(t), the pressure rise in the compressor _(t), and the control throttle

opening ")'throt(t), with the exogenous £2 disturbance included in the simulations for

the constant throttle opening, the closed-loop system with the disturbance rejection

controller (7.5S)-(7.60), the Liaw and Abed [83] controller given by (7.1) with k = 1,

and the Badmus et el. [8] controller given by (7.2) with kl = 1 and k2 = 1. As seen in
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V

Figure 7.6, the disturbance rejection controller rejects the exogenous disturbance and

drives the stall cell amplitude to zero, while the constant throttle opening is unable

to reject the exogenous disturbance, driving the system to a stalled equilibrium. The

Liaw and Abed [83] controller does stabilize the maximum pressure rise point but

has poor disturbance rejection properties. Alternatively, even though, for the given

disturbance, the Badmus et al. [8] controller has comparable disturbance rejection

properties to the proposed controller, it requires a considerably more complex sens-

ing architecture in practice. Figure 7.9 shows a comparison of the throttle opening

for the three controllers considered as well as the constant throttle opening. It should

be noted that the maximum thro_tl e opening amplitude of the disturbance rejection

controller is 1.1286, whereas the maximum throttle opening amplitude for the Liaw

and Abed [83] controller is 1.669, and the Badmus et al. [8] controller is 5.018. The
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Badmus et al. [8] controller has a significantly larger throttle opening amplitude than
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the other two controllers and therefore can violate actuator limitation constraints

in practice. Finally, Figure 7.10 showsthe integral squaredperformance response

/[ Z w(t)z(t) dt versus time for the three designs.

7.6. Conclusion

A linear, fixed-order (i.e., full- and reduced-order) pressure rise feedback dynamic

compensation framework for axial flow compression systems was developed. Unlike

the nonlinear bifurcation-based and backstepping controllers proposed in the litera-

ture, the proposed dynamic compensator framework explicitly accounts for compres-

sor performance versus sensor noise, compressor performance versus controller order,

and compressor performance versus disturbance rejection. Furthermore, the proposed

pressure rise feedback controllers provide a considerable simplification in the sensing

architecture required for controlling rotating stall and surge. Finally, we note that

bifurcation-based controllers discussed in the Introduction are dependent only upon

measured quantities as opposed to the proposed controller which requires a model for

the performance characteristic map. However, it is important to recognize that since

the proposed controller guarantees robust stability for all ¢(.) E ¢_¢, an accurate

representation of the performance characteristic map is not required.
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v
CHAPTER 8

w

Fixed-Structure Controller

Synthesis for Real and Complex

Multiple Block-Structured

Uncertainty

v

8.1. Introduction

The ability of the structured singular value to account for complex, real, and

mixed uncertainty provides a powerful framework for robust stability and performance

problems in both analysis and synthesis (see [30, 37, 97, 105,123] and the numerous

references therein). Since exact computation of the structured singular value is, in

general, an intractable problem, the development of practically implementable bounds

remains a high priority in robust control research. Recent work in this area includes

upper and lower bounds for mixed uncertainty [37, 81,123] as well as LMI-based

computational techniques [18, 41].

An alternative approach to developing bounds for the structured singular value is

to specialize absolute stability criteria for sector-bounded nonlinearities to the case of

linear uncertainty [53]. This approach, which has been explored in [23,46,48,49,51,52,

57,61], demonstrates the direct applicability of the classical theory of absolute stability
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to the modern structured singular value framework. In particular, the rich theory of

multiplier-based absolutestability criteria due to Lur_ and Postnikov [1,82, 94,103],

Popov [102], Yakubovitch [119, 120], Zames and Falb [125], and numerous others

can be seen to have a close and fundamental relationship with recently developed

structured singular value bounds.

The objective of this chapter is to use the absolute stability results of [53], which

unify and extend existing structured singular value bounds for mixed uncertainty,

to obtain fixed-structure controllers and fixed-order stability multipliers which pro-

vide robust stability and performance. Using the results of [53], the robust controller

synthesis technique proposed here permits the treatment of fully populated real un-

certain blocks which may, in addition, possess internal structure. Such problems

arise in a variety of applications, such as the study of modal dynamics, in which

transformation to 'standard' diagonal form may introduce additional conservatism,

computational complexity, as well as destroying the parameter space of the original

uncertainty characterization [53]. The ability to address real uncertain blocks is based

on the use of an appropriate class of multipliers whose structure is compatible with

the real block uncertainty. Hence, tailoring the multipliers to the structure of the

uncertainty not only leads to the ability to address more general uncertainty charac-

terizations but can also lead to less conservative controllers than obtained from the

standard mixed-# synthesis techniques. This more general class of multipliers has no

counterpart in standard mixed-# theory [37,105,123].

8.2. Abs0iute Stabiiiiy criterion With Generalized

Positive Real Stability Multipliers

In this section we review the absolute stability criterion for multivariable systems

with generalized positive real stability multipliers given in [53]. This criterion involves
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%1

a square nominal (open-loop or feedback) transfer function G(s) in a negative feedback

interconnection with a complex, square, uncertain matrix A as shown in Figure 8.1.

Here, we consider the set of block-diagonal matrices with possibly repeated blocks

W

G(s)

Figure 8.1: Standard feedback uncertainty representation

V

defined by

Abs _ {A • Cv×P: A = block-diag [I_, @ A_,...,I¢, ® A_,

Ixbr+ , ® /\rC+l,... ,/_)r+c ® /\rC.{_c] ; Ar •RP'×P',i= 1,...,r;

• CP,×P,,i = r + 1,..., r + c},

where the dimension p, of each block and the number of repetitions ¢i of each block

are given such that _¢ipi = P, where v = r + c is the number of distinct uncer-
i=1

tain blocks. Furthermore, define the subset z_ c_ Abs consisting of sector-bounded

matrices

A _ {A • Abs: 2(A - M1)*(M2 - M1)--'(A - M,) _< (A - M1) + (A - M,)*},

where M1, M2 • Abs are Hermitian matrices such that M _ M2 - M1 is positive

definite. Note that M1 and M2 are elements of A. Alternate characterizations of A

are given in [53].

To draw connections with the structured singular value for real and complex block-

structured uncertainty, we specialize the set A to the case of norm-bounded, internally
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block-structured uncertainty. Specifically,by letting M1 = -7-11 and M2 = .y-1i,

where -), > 0, it follows that M -- 2-),-1I so that M -1 = ½"),I. In this case, A becomes

Now, A • A_ if and only if ama_ (A) _< .),-1. Therefore, A_ is given by

= • <

Next we give the multivariable absolute stability criterion for sector-bounded un-

certain matrices. To state this criterion, we define the sets D and N" of Hermitian

rational scaling matrix functions by

D a_ {D: C _ CP×P: D(jw) >_ O, D(jw)A = AD(jw), w • R, A • Abs},

.IV" _= {g : C _ Cp×p : N(jw) = g*(jw), g(jw)A = A*Y(jw), w • R, A • ADs }.

Furthermore, define the set Z of rational multiplier functions by

Z _ {Z: C --_ C_×q : Z(jw) = D(jw) - jwN(jw), D(.) • D, g(.) • .M}.

Note that if Z(-) • Z, D(.) • D, and N(-) • A/', then Z(jw) = D(jw) - jwN(jw)

if and only if D(jw) = He Z(jw) and N(jw) = _Sh Z(jw), w _ O. Hence, since

D(jw) >_ O, w • R t2 c_, Z(.) • Z consists of generalized positive real functions [3].

Remark 8.1. Although the condition D(jw)A = AD(jw) in D arises in complex

and mixed-# analysis [37], the condition N(jw)A = A*N(jw) in Af has no counterpart

in [37]. As shown in [53], this condition generalizes mixed-# analysis to address

nondiagonal real matrices which are not considered in standard mixed-# theory. The

condition N(jw)A -- A*N(jw) is an extension of the condition used in [46] for Popov

controller synthesis with constant real matrix uncertainty.

W
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We now state our main robust stability result.

Theorem 8.1 [53]. Suppose (I + G(s)M1)-IG(s) is asymptotically stable. If

there exists Z(.) E Z such that

He [Z(s)(M -1 + (I + G(s)MI)-_G(s))] > 0, (8.1)

for all s = jw, w C R U co, then the negative feedback interconnection of G(s) and A

is asymptotically stable for all A E A.

8.3. Stability Multiplier Structure

To ensure the commutability of the rational scaling matrix functions Dis ) and

N(s) with the uncertainty set A, we must structure Z(s) = Cm(sI-Am)-_Bm+Dm so

that Z(s) E Z. To assure this, we construct the multiplier Z(s) from the constituent

multipliers D(s) and N(s). Furthermore, instead of obtaining a realization for N(s),

we obtain a realization for sN(s) directly since Z(s) = D(s) - sN(s). We therefore

choose multiplier realizations

L J' C n 0 '

where Ad E 'SAd, An E 8A., Bd E SBd, Bn E SB., Cd E SOd, Ca E Scn, and Dd E SDd.

The sets SAd, SA., SBd, ,SB., ,Scd, ,Sen, and 8Dd are chosen to enforce the diagonal

structure of D(s) and N(s) given by

D(s) = Cd(sI - Ad)-lBd +nd = block-diag [nl(s) ® Ipl,. ..,n,(s) ® Ipo] ,

N(s) = C.(sI - Ad)-_Bn = block-diag[Nl(s)® Ip,,...,N,,(s) ® Ip_] ,

where

0 <_ D_(s) C C O` ×'¢", i= 1,...,V,
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N,(s) = N;(s) • C_'×¢',N,(_)A_= N,(s)/X;, i= 1,...,v.

The structure chosen for the rational functions representing D(s) and N(s) in this

chapter is similar to the one for the curve-fitting operation in standard/z-synthesis [9].

In particular, we define SAd, SAn, SBd, 8Bn, SOd, $Cn, and ,SOd as follows:

,SAd _ {Ad = block-diag [I_lvl ® Ad,,..., I¢_ w ® Ad_] : Ad, • R nd' ×rid,,

Ad, is in controllable canonical companion form with the 1st

row = 0 ad,., 0 ad,.4 .- 0 ad,.nd ' sgn ad,,j

i= 1,...,v, j = 1,...,rid, I, (8.2)

,SAn __A {An = block-diag[I_wl ® Am,...,I¢_w ® An_]" A,, • ]Rn°, ×nn,,

An, is in controllable canonical companion form with the 1_t

row---- [0 an,., 0 an,,, "'" 0 an,.,n,],i=l,..-,v}, (8.3)

SBd _ {Bd = block-diag[Icw,

B w
d----[1 0 "-" 0

SBn _ {B. = block-diag [I_,_w

BnT= [ 1 0 "-0

,SOd _ {Cd---block-diag[I,plw

Cdi = [ 0 Cdi,2 0 Cdi,4 "'"

i = 1,...,v, j = 1,...,rid,},

® Bdl,...,I¢_p. ® Bdo] : Bd, • R ha' xl,

],i=l,...,v},

® Bnl,..., [¢,_pv ® Bn_] : Bn, • R n°' ×1,

],i=l,...,v},

®cd,,...,I_o_o ®Cd_]: Cd,• R1×"_,,

Cd,.,d, ] , sgn Cd,,j
0 (_l)Z_,

,Sc, _ {C. = [block-diag[I¢, m ®Cn,,...,I¢. w ®Cn.]] " Cn, • R '×""'

0 Cn, 0 ,+
,SOd _= {Dd = block-diag[dd, I¢_w,..., dd_Io_w] " dd,• R, dd,> O,

i = 1,...,v},

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

W
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where nd_ and n._ are the a priori fixed even orders of the rational functions repre-

senting the ith diagonal element of the multipliers D(s) and N(s), respectively. Thus

we see that nd and nn, defined as

V l)

nd= nd,¢i, n.= n.,¢i, (8.9)
i=l i=1

are the total number of states describing D(s) and N(s), respectively.

To construct Z(s) = D(s) - sN(s), we obtain the augmented realizations

Am = block-diag[md, An], (8.10)

[Bd] (8.11)Bm = Bn '

Cm = [ Cd --On ], (8.12)

Dm = Dd, (8.13)

where Ad E SAd, An E SA., Bd E SBd, Bn E SB., Cd E SCd, Cn E SC., and Dd E SD d.

Note that Am E R nmxnm, where nm = nd+ nn. Furthermore note that there is no

contribution to Dm from the sN(s) term. This is due to the fact that the rational

function N(s) is strictly proper and has only even powers of s. Thus N(s) necessarily

has a relative degree of two and hence sN(s) is strictly proper.

Next, we note that with

z(s, [Amr°m]Cm Dm '

as defined in (8.10)-(8.13), we obtain the necessary commutability properties, as well

as ensuring that D(s) > 0 and N(s) = N*(s). However, to satisfy the condition

g(s)A = A*g(s), we require "ihat the i th block of N(s)be zero whenever the ith

uncertainty block Ai is complex. Thus, in the case where Ai E C p_xp_, we require

that the realization of Ni(s) be given by

An,=[ ]0x0, Bn,=[ ]0x,, C,,=[ ],x0,
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where[ ]o×j is the 0 × j empty matrix [96]. Thus, in this case, the ith block of N(s)

is given by

Ni(s) = Cn,(sl- An,)-lBn, = O.

Finally, we note that the stability multipliers cannot have arbitrary realizations

and still be elements of their appropriate sets SAd, 8A., SBd, SBn, SCd, $C., and SDd.

Thus we recast the stability multiplier matrices so that the free parameters appear

along the diagonal of a separate matrix, /Co. The stability multipliers can then be

constructed as

W

g

g

Am = Amc + AmLICmAmR,

C m : CmL)_mCmR ,

Bm : Bmc,

Dm _- DmLK_mDmR,

g

where the matrices Amc, AmL, AmR, Bmc, CmL, CmR, DmL, and DmR are structured

• a-ppr0priately. To illustrate the structure of Lthese matrices, consider the scalar mul-

tiplier

Cdl,2 Cnl,l S
Z(s) = dd,+

S 2 -- ad_,_ S 2 -- an,,2 "

The gain and structure matrices for the stability multiplier with nn _--- n d _-- 2 are

then given by

_m

Amc - 0 0
0 0 '

0 1

ad,,2 0 0 0 0

0 cd,,_ 0 0 0

0 0 dd, 0 0

0 0 0 an,,2 0

0 0 0 0 cn,,,

AmL [ ooo ]0 0 0 AmR=
001

000

"0

0

0

0

0

1 0

0 0

0 0

0 0

0 0

.

0

0 ,

1

0 : "

W
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BmC [i]
CmL= [ 0

"0000"

0100

_R=O000,

0000

0010

100 --1" , DmL= [00

DmR

100].

With these definitions, we see that

Am -- 0

0

Cm=[0

0 ad_._ 0 0
1 0 0 0

0 0 an_,_
0 1 0

Cdl,2 --anl,l 0

, Bm

, Dm --

1

0

1 '

0

dal ] ,

and thus

Z(s) = Cm(sI - Am)-lBm + Dm = dd,+
Cdl,2 Cnl,l 8

82 -- ad_,2 82 -- am,2"

8.4° Decentralized Static Output Feedback Formu-

lation

V

In this section we review the decentralized static output feedback problem for-

mulation for fixed-structure controller synthesis [14, 34]. Consider the (m + q + 1)-

vector-input, (m + q + 1)-vector-output decentralized system shown in Figure 8.2,

where ei and di, i = 1,...,q, are used to account for model uncertainty, w is the

exogenous disturbance input, z is the performance variable, and the signals Yi and

ui, i = 1,..., m, are measurement and control signals, respectively. The decentral-

ized static output feedback multi vector-input, multi vector-output system shown in

Figure 8.2 is characterized by the dynamics .......

m q

x(t) = A2(t)+ E B_uj(t)+ E Bd*dk(t)+B_w(t), t e [O, co), (8.14)
j=l k=l

m q

yi(t) = C_,2(t)+ ET)_,juj(t)+ ED*d,_dk(t)+iD_,w(t), i = 1,2,...,m, (8.15)
j=l k=l
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L_
w

u I

G(s)

_1 ] _ Yl

u2

u Ym

Figure 8.2: Decentralized static output feedback framework

m q

ei(t) : Ce,5:(t)+EDe_quj(t)+E:Deaikdk(t)+Dew, w(t), i= 1,2,...,q, (8.16)

j=l k=l

m q

z(t) = Cz_(t)+ E _)zujUj(t)-I- E :Dzdkdk(t)+ :D._w(t). (8.17)
j=l k=l

In the above formulation, model uncertainty is represented by the decentralized

static output feedback map

di(t) : Aiei(t), i = 1,...,q, (8.18)

where the uncertain matrices Ai are not necessarily distinct. To represent decentral-

ized static output feedback control with possibly repeated gains, we consider

ui(t) = Eiyi(t), i = 1,...,m, (8.19)

where the matrices/(:i are not necessarily distinct. Reordering the variables in (8.18)
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and (8.19) if necessary and defining

[ult,] [el t,]_(t) = . , _(t)= • , d(t)= . , e(t)= • ,
[um(t)J [ym'(t)] [dqit)J [%it)J

C_ __a :

LC: j

Ce _ :

LCeqJ

= A
7)yu A : "'. : _ 7)yd = "'.

7)yuml "'" 7)yUmm "'"

,7)o_ ... ,7)_d_ ...
7) _1 "'" 7)_q,,, "'"

7)zd A__ [ _) zdt "'"

[ 7)ydll

LT)Ydm,

[ 7)edt 1

L T)edql

7)ywl ]_ , 7)_ a___7? m

• " 7)_, ],

7)ydlq

7)ydmq

7)edlq

7)edqq

i'
.7) Wq

(8.18) and (8.19) can be rewritten

(8.20)

where A and ]C have the form

(8.21)

(8.22)

(8.23)

(8.24)

d(t) = Ae(t), (8.25)

fi(t) = K:_)(t), (8.26)

A __ablock-diag[I¢, ® A,,...,I¢. ® Av] ,

]C _ block-diag [I¢, ® }C,,..., I_9 ® ]Ca],

(8.27)

(8.28)

where v is the number of distinct uncertainties A, E C p_×P' or Rp' xp_, ¢i is the number

of repetitions of uncertainty Ai, g is the number of distinct gains ]ci E R "_×c_ and

¢i is the number of repetitions of gain ]ci. Note that ]C1,..., ]Ca are not necessarily
v g

square matrices, and E¢i = q and E¢i = m.
i=1 i=1
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With the definitions in (8.20)-(8.24), the transfer function G(s) from [fiT, d_r, wT]T

to [_W, _W, zT]T of the decentralized system has the realization

r A I 'Bd'Bw "
I I

G(s) ,-_ /--C_-i-__2L_- (8.29)

Lc= v=,,', ',
which represents the linear, time-invariant dynamic system

x(t) = A_(t) + B_(t) + Bdd(t) + Bww(t), t e [0, _), (8.30)

_)(t) = Cy2(t) + 7)y_,ft(t) + 7)ydd(t) + 9yww(t), (8.31)

_(t) = Cjc(t) + 7)e_,_t(t) + I)edd(t) + 7)_,w(t), (8.32)

z(t) = C=2(t) + 9=_(t) + 7:)_dd(t) + 9=_w(t), (8.33)

which is equivalent to (8.14)-(8.17). Furthermore, by rewriting the decentralized

control signals (8.19) in the compact form given by (8.26), the closed-loop system

realization from [d_r, wT] T to [_T, zT]T is given by

G(s) ,--, L/)o ; D_-L , (8.34)

where

Co a= Ce + :De,,EL_:_C_,

_= Cz + 7)=uICLiclC_,

DO _-_ Bd -_- ]_u]CL_lDyd,

DO _ _ed -_- Deu]CL_:l_yd,

[) _ Bw + B,,ICL_:I:Dy_,

and where L_: __a I - :D_K:. Note that we assume det(L_:) _ 0 for all K: given by

(8.28) to ensure the well-posedness of the feedback interconnection.

Finally, given the closed-loop system realization given by (8.34) with /)0 - 0,

/)1 = 0, _:1 - 0, and/_0 = 0, and the multiplier realization given by

Cm Dm '
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the realization of G(s) _ Z(s)(M -1 + (I + Gea(s)M1)-lGea(s)), where Ged(S) is the

closed-loop transfer function from uncertainty inputs _{(t) to uncertainty signals _(t),

is given by

A t}0

where

= BmCo Am ' = BmM- '

Co---A [ DmCo Cm ], DoA--[ DraM-' ].

8.5. Specialization to Centralized Strictly Proper

Dynamic Compensation

V

In order to give a more concrete illustration of the decentralized static output

feedback framework, in this section we provide an example with a single uncertain

block using a centralized, strictly proper dynamic controller. Specifically, consider

the uncertain dynamical system

2(t) = Ax(t) + Bu(t) + Bod(t) + D,w(t),

y(t) = Cx(t) + Du(t) + Fld(t) + D2w(t),

e(t) = Cox(t) + F2u(t),

z(t) = Elx(t) + E2u(t),

t • [o,_), (8.35)

(8.36)

(8.37)

(8.38)

with uncertain plant perturbations AA = BoACo, AB = BoAF2, AC = F1ACo,

AD = F1AF2, of the nominal system matrices (A, B, C, D).

The dynamics of the centralized, strictly proper controller are given by

2c(t) = Acxc(t) + Bey(t), t • [0, oo), (8.39)

u(t) = c_z_(t), (8.40)
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so that the closed-loopsystemcan be written as

x(t) = ftY:(t) + Bod(t) + [gw(t),

e(t) = 5o_(t),

z(t) = _(t),

t • [o,_), (8.41)

(8.42)

(8.43)

W

where

_(t) A [ x(t) ]= Lxc(t) ,fi_[A= BcC

do_ [co

BCc bo_[ Bo ]A¢ + B¢DCc ' B¢F1

Writing this system in the decentralized static output feedback framework, we

obtain

and

3

x(t) = AYc(t) + E Bujuj(t) + Bdd(t) + Bww(t), te[0, cx_), (8.44)
j=l

3

yi(t) = Cu, Yc(t) + E:Du,,,_uj(t) + :D_d,d(t) + Dy_,,w(t), i= 1,2,3, (8.45)
j=l

3

e(t) = Cjc(t) + E De,_juj(t), (8.46)

j=l

3

z(t) = C3:(t) + y_ Vz_,juj(t), (8.47)

j=l

ul(t) = A¢yl(t), u2(t)= B_y2(t), u3(t)= CcY3(t),

where

Oo]= B_2 = B.a = Be = , B_ =
C C

Cy 1 A 0 In¢ , _)yUll =A O, _YUl 2 ._- O, _yUl 3 = O, _Ydl _-. O, _)YWl = O,

C_ 2 =zx[C 0], 7)y,,21 =a 0, Vu_,22 =zx0, Duu23 =_ D, Vyd2 =zxFx, Dye, 2 =a D2,
A A A A A

c_3=_[o I_], vy_a_= o, z)_32= o, vy.3a = o, v_ = o, 9_ 3= o,
c_[Co o], v_ Ao,= v_"o,= V_F_,
C,_=[E, o], v_._o, v.._"o,= v.._"E_.=
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Next, defining

c_ =_

[Ul(t)l [,,(t)]
_(t) _/u2(t)/, _(t) _ iy2(t)/,

Lu3(t)J Ly3(t)J

_Y3 [_)YU31 _)YU32 _)YU33 k_)yd3

"_Dzul _)zu2 _zu3],

, _ _ ' _y_2 ',
[_yw3J

and rewriting the decentralized control signals in the compact form

_(t) = K:_(t),

where
A¢ 0 0

=_ 0 Be 0 ,

0 0 C¢

the system matrices fi,,/}o, D, Co, and E in the closed-loop dynamics

x(t) = 7t5:(t)+ [_od(t)+ [:)w(t),

_(t) = 5o_(t),

z(t) = k_(t),

te [0,_), (8.48)

(8.49)

(8.50)

can now be written as

fI = A + BJCL_C. = [ A BCc ]BcC A¢ + B¢DC¢ '

[_o = Bw+B.]CL_clT)yw= [ B° ]BcF1 '

D=B_+B_ELicl:Dy_= [ D1 ]BeD2 '

00 = C. + :D..EL_:_Cy = [ Co F2Cc ],

= Cz + :D_JCL_:_Cy = [ E, E2C¢ ].

Furthermore, closing the uncertainty loop from d(t) to e(t) yields the closed-loop

realization

(_ (s) ,--, fi" +/}°A6'° I/) ]E 0 "
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8.6. Robust Stability and Performance

In this section we present sufficient conditions for robust stability of the feedback

system given in Figure 8.1 and a robust 7-/2 performance bound for ]lGz,o (s)1122 .

Specifically, the following theorem provides a sufficient condition for ensuring that

Z(s)[M -1 + [I + Ged(8)M1]-laed(S)] is strongly positive real [48], as well as providing

a robust performance bound for Gz_(s)ll_.

define the notation

0],

For the statement of the next theorem

0 '

and recall the defiuition for a strongly positive real transfer function [48].

Theorem 8.2. Suppose there exists P E l_ +n" satisfying

o=ATp+pA+([3[p_5o)(bo+b[)-'(bZP-So) T +_,. (8.51)

Then Z(s)[M -1 + [I + _ed(S)Mll-lGed(S)] is strongly positive real. Consequently,

the feedback interconnection of G(s) and A is asymptotically stable for all A E A.

Furthermore,

]](_w(s)lI_ < tr pj_)f)w. (8.52)

To apply Theorem 8.2 to controller synthesis, we use the modified Riccati equation

(8.51) to guarantee that the closed-loop system is robustly stable. This leads to the

following optimization problem.

Optimization Problem. Determine gain matrices ]C E R E_g=l_xE_=_e_ and

K:_ E R (_m+v)×(_+_) that minimize

fl(/C,/Cm) =_ tr PDD T, (8.53)

where P E 1_ satisfies (8.51), and where _ _ _ +nm.
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8.7. Sufficient Conditions for Fixed-Order Robust

Compensation with Dynamic Multipliers

v

rt_

In this section we state sufficient conditions for characterizing dynamic output

feedback controllers and dynamic stability multipliers guaranteeing robust stability

and robust 7"/2 performance.

matrices/5 and Q as

For the statement of the next theorem, partition the

0__[Q,,Q12]PI_ P_2 ' QT_ O_ '

where Pll, Qll E N _ and P22, Q2_ E N TM, and define

QLij

rl _bl xr/

Or2¢2×ri

0ri_l¢__ l ×r,

I,,
Ori(_,-j)x_i

Or,+i_i+1xri

QR,j
A

C101XCi

Oci--l¢i-- 1 XCi

Oci(j--1)×Ci

Ic,
0ci(¢i-j)xc,

0Ci+ 1 _bi+l XCi

Ocv¢_ x ci

T

(8.54)

where ri and ci are the dimensions of the ith controller gain, K:i C R "_×_, i = 1,..., v,

and j = 1,...,¢i.

Theorem 8.3. Suppose there exists h x fi nonnegative definite matrices t5 and

(_ satisfying

0=AT/5 +/SA + (B[/5 - do)(bo + D[)-1(/3[/5 - C'o) T + ETE, (8.55)

o: (A_bo(_o+_:)-,(_:p__o))O+O,(A-_o(bo+b:)-,(B:P-_o))_+bb_,(856)

and let K:i satisfy

_bi

o _Eq_:, (i+ • -T • [:DueLlo E ) BT(p_Q_+P_2QT2)(C w -T W W - W: -C d Ml:Dyd) -t-13_ PIBwT)y w

j=l
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z)T- T T T T 12Q12)]C_,+ zuCzQ1Cy + :D_,,[Bm(P12Q1 + p_QT2)_ MI_T(p1Q1 + p T T

T+Bu[(P1Q1+ PI2QT2)(PIBd + P12BmM-1 -- CTDm)

+(P1QI2+ P_2Q2)(PT[_.+ P2Bmi -_ -C_)](DmM -_ + M-1Dm)-lTPT,_

_:DeuDm(nm MT -1 + M-1Dm)-l[(pl_a + P12BmM-1 _CeJ'T nm) T Q1

+(pT Bd + P2Bmi -1 - cT)TQT]¢[]LTcTQT,_. (8.57)

Furthermore, let K_m satisfy

0 = diag{2ATL(PTQ,2 + P2Q2)ATR

--2CTL(DmM -' + M-'Dm)-I(TTQI_ + TTQ2)CTmR

T T -T T
--2DTL(Dm M-1 + i-lDm)-l(TWQ1 + T 2 Q12)Ce nmR

-DTL(DmM -1 + M-1Dm) -1 (M-1TTQIT 1 + TTQ_T1M -1

+M-1TTQ2T2 + TTQ2T2M -1 + 2M-1TTQ12T2 + 2TTQT2T1M-1 )

•(DmM -1 + M-1Dm)-IDTR} , (8.58)

where

T1 _ PIJBd + PI2Bm M-1 - CTDm, T2 zx pW_d + P2BmM_ 1 _ cT"

Then Z(s)[M -1 + [I + G_a(s)M,l-'Ged(S)] is strongly positive real. Thus the closed-

loop system from w(t) to z(t) is asymptotically stable for all A • z_. Furthermore,

the worst-case 7/2 performance of the closed-loop system satisfies the bound

IICz_(s)ll__ tr p/_T. (8.59)

Proof. First we obtain necessary conditions for the Optimization Problem and

then show, by construction, that these conditions serve as sufficient conditions for

closed-loop stability and robust 7-/2 performance. Thus, to optimize (8.53) subject to
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(8.51), form the Lagrangian

L()_,)_m,Q,)_) _____Atr [APb/9 T + (_(`4Wp + p`4

where the Lagrange multipliers A >__0 and (_ E R a×a

K_,/Cm, and/5 as independent variables, we obtain

are not both zero. By viewing

0L

oP (,4- _o(bo + b[)-'(h_oP - _o)) _)

-'_-(_ (A - .Bo(b0 -_- b:)-I (HIP - Co))

T

+ ,_bb"_. (8.60)

If (`4--/_o(Do+bT)-I(BT/5--Co)) is Hurwitz, then A -- 0 implies Q = 0. Hence, it

can be assumed without loss of generality that A = 1. Furthermore, note that Q is

nonnegative definite. Thus the stationary conditions with A = 1 are given by

0L = - Bo( o+b:)'(B:P-aP

+Q(A- Bo¢o+b:)-'(B:P-
OL

alQ

T

+bbT=o,

T -T T [ T T T ~T TU.(P1Q_ - C_ MlZ)v_)- 2 __, QLT, (I + 7)re, Lie IC ) + P,_QI2)(Cv
j=l

T ~ T T ~ T T T
+BuP1BwZ)vw + DzuCzQ1C v + _)eu[Bm(PTQ_ + P2QT2)

-M1 _T (P1QI+P12QT2)]c:+ _T[(p1Ql+P12QT2)(101 [_d+P12 Bm M-l-_T Din)

-1 -1 T
+(P1Ql2 + P12Q2)(PT[_d + P2Bm M-l - cT)](Dm M-1 + M Om) Z)vd

T -1 M-1Dm)-,[(el[_d __ _TDm)TQ,-l)euDm(DmM + + PI2BmM -1

TT T T
+(pW[3 d+P2BmM-_ Cm ) Q,2]Cv] -w W-- LIc Qao = O,

= diag(2AWL(PWQ12 + P2Q2)ATa

-2CTL(DmM -_ + M-1Dm)-_(TTQ12 + TTQ2)CTa

'T'T w}T / (%TDT--2DTL(Dm u-' + M-'Dm)-I(TTQ' +_2 _12_e m_
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T -1
-DmL(DmM + M-1Dm) -' (M-1TTQIT 1 + TTQ,T1M -'

+M-'TTQ2T2 + TTQ2T2M -1 + 2M-'TTQ12T2 + 2TTQT2T1M-' )

.(DraM-1 + M-1 -1 TDm) DmR} = O,

which are equivalent to (8.56)-(8.58). Equation (8.55) is a restatement of (8.51). It

now follows from Theorem 8.2 that if Z(s)[M -1 + [I + Ged(s)M1]-lGed(S)] is posi-

tive real then A +/_0AC0 is asymptotically stable for all A E A. Finally, the 7/2

performance bound (8.59) is a restatement of (8.53). []

Equations (8.55)-(8.58) provide constructive sufficient conditions that yield dy-

namic controllers for robust fixed-order (i.e., full- and reduced-order) output feedback

compensation. By using these equations within a numerical optimization algorithm,

the optimal robust fixed-order controllers and stability multipliers can be determined

simultaneously, thus avoiding D, N - K iterations.

8.8. Quasi-Newton Optimization Algorithm

A general-purpose BFGS quasi-Newton algorithm [26] can be used to calculate the

controller gains and the stability matrices, as described in Section 2.3. One require-

ment of gradient-based optimization algorithms is an initial stabilizing design. For

full-order controller design, the algorithm can be initialized with an LQG controller,

while for reduced-order control, the algorithm can be initialized with a balanced trun-

cation of an LQG controller. Small values should be chosen for M1 and M2 so that

the design equations (8.55) and (8.56) can be solved. The quasi-Newton optimiza-

tion algorithm can then be used to find the controller gains Ac, Bc, and Cc and

the multiplier gains Am, Bm, Cm and Din. After each iteration, 3/1 and M2 are in-

creased and the current values of the controller gains (Ac, Bc, Co) and multiplier gains

(Am, Bin, Cm, Din) are then used as the starting point for the next iteration.
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8.9. Conclusion

This chapter used the absolute stability results of [53] to obtain fixed-structure

controllers and fixed-order stability multipliers which provide robust stability and

performance. By satisfying certain commutability properties with the uncertainty

set, the stability multipliers designed by the robust controller synthesis technique

proposed here permit the treatment of fully populated real and complex uncertain

blocks which may, in addition, possess internal structure. Hence, tailoring the mul-

tipliers to the structure of the uncertainty not only leads to the ability to address

more general uncertainty characterizations but can also lead to less conservative con-

trollers than obtained from the standard mixed-# synthesis techniques. Furthermore,

since the numerical optimization routine optimizes over the free parameters in the

controller and the stability multipliers simultaneously, this methodology avoids the

D, N- K iterations of standard mixed-# synthesis techniques.
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CHAPTER 9

V

Concluding Remarks and
Recommendations for Future

Research

9.1. Conclusions

In this report, we introduced a decentralized static output feedback framework

for fixed-structure dynamic controller synthesis. As a special case of this framework,

we showed how a centralized dynamic output feedback control problem can be trans-

formed to a decentralized static output feedback form. By using this format, a nu-

merical optimization scheme can be used to optimize the controller gains with respect

to a given cost function and constraint equation. Furthermore, we demonstrated its

effectiveness on the ACTEX flight experiment.

Next, we used the decentralized static output feedback framework to synthesize

stable H2-optimal controllers by including the 7{_ cost of the controller in the La-

grangian and using a multiobjective optimization technique. It was numerically shown

that for some systems, namely minimum phase, open-loop unstable or non-minimum

phase, open-loop stable plants, a stable controller can rival the performance of an

unstable ?-/2-optimal LQG controller and yet not be constrained by the loop mar-

gins of unstable controllers. For other systems, however, there could be a significant
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degradation in performanceby requiring the controller to remain stable, although

this techniqueprovided controllers yielding the minimal 7-/2closed-loopcost for all

stable linear controllers.

By exploiting the ability of the decentralizedstatic output feedbackframework

to a priori fix the structure of the controller, we were able to synthesize _/2-optimal

relative degree two controllers. This was accomplished by cascading two strictly

proper dynamic controllers in the feedback loop and optimizing over the free controller

parameters. It was shown that constraining the controller to have a relative degree of

at least two only marginally increased the 7-/2 cost of the closed-loop system, though it

was noted that changing the order of the separate cascaded controllers in the feedback

loop does significantly affect the _2 cost of the closed-loop system and the natural

frequencies and break frequencies of the controller dynamics.

Next we focused on robust control by extending the implicit small gain guaranteed

cost bound [54] to controller synthesis. Specifically, the implicit small gain guaranteed

cost bound was used to address the problem of robust stability and _2 performance

via fixed-order dynamic compensation, and a quasi-Newton optimization algorithm

was used to solve the coupled nonlinear design equations.

We then extended the robust fixed-structure guaranteed cost controller synthesis

framework to synthesize robust resilient controllers, or controllers which are robust

in the face of system parametric uncertainty and variations in the controller gains

themselves. Specifically, the guaranteed cost approach of [10] and [13] was used to

develop sufficient conditions for robust stability and 7"/2 performance via fixed-order

dynamic compensation.

The robust fixed-structure control framework was then used to develop linear,

fixed-order (i.e., full- and reduced-order) pressure rise feedback dynamic compen-

sators for axial flow compression systems. Unlike the nonlinear bifurcation-based and
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backstepping controllers proposed in the literature, the proposed dynamic compen-

sator framework explicitly accounts for compressor performance versus sensor noise,

compressor performance versus controller order, and compressor performance versus

disturbance rejection. Furthermore, the proposed pressure rise feedback controllers

provide a considerable simplification in the sensing architecture required for control-

ling rotating stall and surge.

Finally, we used the absolute stability results of [53] to obtain fixed-structure

controllers and fixed-order stability multipliers which provide robust stability and

performance. By tailoring the multipliers to the structure of the uncertainty, we

could permit the treatment of fully populated real and complex uncertain blocks

which may, in addition, possess internal structure. This not only leads to the ability

to address more general uncertainty characterizations but can also lead to less con-

servative controllers than obtained from the standard mixed-# synthesis techniques.

Furthermore, by using a numerical optimization routine, we could optimize over the

free parameters in the controller and the stability multipliers simultaneously, thus

avoiding the D, N - K iterations of standard mixed-# synthesis techniques.

9.2. Recommendations for Future Research

The decentralized static output feedback formulation and the quasi-Newton op-

timization algorithm discussed in Chapter 2 are programmed into a MATLAB tool-

box [35]. However, in its present form, it is not the most user-friendly program, and

making it easier to use would most likely spread its use. Also, as it now stands, the

quasi-Newton optimization algorithm has only one search method. Adding routines

such as "double dog-leg" searches or locally constrained optimal "hook" steps [26] to

the Armijo-type routine already programmed would enhance the robustness of the
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optimization routine. Furthermore, adding numerical gradient computations instead

of relying solely on analytical gradient computations will extend the range of the

problems the routine will be able to solve.

In Chapter 4, we designed controllers with a minimum guaranteed (vector) rel-

ative degree of two. However, the theory itself is very general, and we can use the

same formulation to design controllers of (vector) relative degree r. Furthermore, the

methodology used to obtain relative degree two controllers was solely based on the

structure of the controllers, and was not constrained to a particular notion of opti-

mality. In Chapter 4, we designed ?-/2-optimal controllers, but we could just as easily

design 7-/oo-optimal (vector) relative degree two or even relative degree two robust

controllers.

In Chapter 5, robustness was guaranteed by bounding the effects of the uncertain

terms in the Lyapunov equation. However, this was just one particular bound, and it

may not be the best bound for certain applications. Further work may be able to find

new bounds which can reduce conservatism and therefore give better performance for

particular problems.

As noted in Chapter 6, almost all robust control theory available in the literature

address either the issue of (structured or unstructured) plant uncertainty or the issue

of uncertain exogenous disturbance rejection. However, the stability of closed-loop

systems could be very sensitive to numerical errors in the controller gains themselves.

Hence, an important issue in robust control should be the robustness of compensators

with respect to implementation errors arising from floating point accuracy in the

processor. While we presented bounds to deal with controller gain variations for

linear control problems, extending the results of Chapter 6 to address the robustness of

nonlinear compensators is of utmost importance and remains essentially an untapped

area of future research.
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The general fixed-structure positive real stability multipliers developed for real

parameter uncertainty in Chapter 8 are structured to handle real block uncertainty,

but the diagonal structure of Z(s) is not the most general form for the case of repeated

uncertainties. For example, if the uncertainty matrix is

61 0 0 0 "[

0 (_1 0 0 J0 0 52 0 '

0 0 0 62

then the commutative property AD(s) = D(s)A will hold for a multiplier of the form

D(s) =

d,,(s) d_2(s) 0 0

d,2(s) dl3(S) 0 0

0 0 dm(s) d22(s)

0 0 d22(s) d23(s)

Similarly, a generalization of the structure of N(s) can be made which will result

in a nondiagonal multiplier which will still satisfy the condition N(s)A = A*N(s).

Further work on this problem can generalize the multiplier structure to handle such

a case. Furthermore, this structure for the multiplier Z(s) only allows us to consider

realizable multipliers. However, this precludes us from considering the famous Popov

multiplier, Z(s) = I + Ns. When using the Popov multiplier, one must assume that

(I+ Ns)Gs(s) is realizable, where Gs(s) = M -1 +(I+Ged(s)M1)Ged(S). Thus, instead

of assuming that Z(s) is realizable, we can take

Z(s) = Dr(s) - sNr(s) + sO1 + s202 +... + srDr - sN1 - s2N2 -...- srN_,

where Dr(s) and Nr(s) are the realizable portions of the multipliers, D_ and N_ are

constant matrix scales, and r is chosen such that srGs(s) is realizable.

Finally, although the theory for designing linear output feedback controllers is

quite mature, nonlinear output feedback controller synthesis remains relatively un-

developed. In numerous real world applications, system nonlinearities such as sat-

uration, relay, deadzone, quantization, geometric and material nonlinearities require
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nonlinear output feedback controllers. Furthermore, for linear plants with parametric

uncertainty and nonquadratic performance criteria, nonlinear controllers exist that

generate superior performance over the best linear controller. A fruitful area of re-

search is to develop a fixed-structure controller synthesis framework for nonlinear

control. The motivation for fixed-structure nonlinear control theory is to address

controller synthesis within a class of candidate nonlinear feedback controller struc-

tures. Specifically, control Lyapunov functions can be used to provide a controller

synthesis framework by assuring global or local asymptotic stability for an a priori

fixed class of nonlinear feedback controllers. A specific controller within this class

can now be chosen to optimize a given performance performance functional. Thus,

this provides a constructive framework where Lyapunov theory is used to guarantee

global or local asymptotic stability over a class of nonlinear feedback controllers while

optimization is performed over the free controller gains so as to minimize a specific

performance functional.
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Controller Configuration 2

For this configuration, the controller given by (2.37) can be expressed as

AC

CC

o1ooI-w_ -0.3wl 0 0 Bc =
0 0 0 1 '

0 wl -w_ -0.3w2

o o k_ o].

Note that there are three free parameters, namely, wl, a;2, and k3. Thus

and

K

0 0

W2 0 ,

0 k3

K0

"010000000-

000000000

000100000

000000000

000000000

000010000

000000000

000000000

000000000
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R 1 --_

0

-0.3

0

1

LI= 0

0

0

0

0

"0 0 0"

100

0 0 0

010

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0"

0 0

0 0

-0.3 0

0 0

0 0

0 0

0 0

0 0

T

, R2 =

, L2 =

1 0 0-

0 0 0

010

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

-I

0

0

0

0

0

0

0

T

, R3 ----

0 O"

0 0

0 0

-1 0

0 0

0 0

0 0

0 0

0 0

"000"

000

000

000

000

000

000

001

000

, L3 --

T

"000"

000

000

000

000

000

000

000

010

, M3= 0 •
0

Q

B

g

g

Controller Configuration 3

For this configuration, the controller given by (2.38) can be expressed as

AC ---_

CE

0 1 0 0 ]

-_ -0.3031 0 0
0 0 0 1 '

w_ 0 -w_ -0.3032

o o o].

BC

Note that there are three free parameters, namely, 031,032, and k3. Thus

K

0 0

03 2 0 ,

0 k3

W

170



= .
V

V

and

L 1 =

R1 =

K0 "--

0 0 0"

-0.3 0 0

0 0 0

1 -0.3 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

T
"0 0 0"

100

0 0 0

010

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

, R2 =

"01000000 O"

000000000

000100000

000000000

000000000

000010000

000000000

000000000

000000000

0 0 O"

-1 0 0

0 0 0

1 -10
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0 0 0
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0 0 0

0 0 0

T "000"

000

000

000

,R3=000

000

000
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000

010

000
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000

000

000

, L3 =

T

"00 O"

000

000

000

000 ,
000

000

000

010

M3= 0 .
0

Controller Configuration 4

V

For this configuration, the controller given by (2.39) can be expressed as

AC

CC

0 1 0 0

-w_ -0.3w, 0 0

0 0 0 1

0 w, -w_ -0.3_2

0 0 0 0

0 0 w_ 0

ro o o o o].

0 0

0 0

0 0

0 0

0 1

--03 2 --0.3W3

, Be =

0

1

0

0 '

0

0
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Note that there are four free parameters,namely,Wl, w2, wa, and ka. Thus

L 1 =

K =

and

[olo oo]
0:2 0 0

L00 0 w3 0 '0 0 k3

K 0

"0 1 0 0 0 0 0 0 0 0 0 0 O"

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 O"

-0.3 0 0 0

0 0 0 0

1 -0.3 0 0

0 0 0 0

0 0 -0.3 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

, L2 =

0 0 0 O"

-1 0 0 0

0 0 0 0

0 -1 0 0
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0 0 0 0
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0 0 0 0
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